975 resultados para Benozzo, di Lese, 1420-1497.
Resumo:
The structure of the title compound, [Cu2Cl2(C12H10N2)](n), contains infinite CuCl staircase-like chains, which lie about inversion centres. The trans-1,2-di-4-pyrid-ylethyl-ene mol-ecules also lie about inversion centres and connect the CuCl chains through Cu-N coordination bonds into a two-dimensional organic-inorganic hybrid network. The planar sheets are stacked along the c axis and associated through weak C-H center dot center dot center dot Cl inter-actions. The results show a reliable structural motif with controllable separation of the CuCl chains by variation of the length of the ligand.
Resumo:
The title compound, {[Mn-2(CH3CO2)(4)(C10H8N2)(2)](H2O)-H-.}(n), is a one-dimensional coordination polymer with a ladder-like structure. Two Mn-II atoms, each coordinated by a chelating acetate ligand, are bridged by two bidentate acetate ligands to form a centrosymmetric [Mn-2(CH3CO2)(4)] unit. Two 4,4'-bipyridine ligands link the [Mn-2(CH3CO2)(4)] units through Mn-N bonds to generate a molecular ladder. The water O atom lies on a crystallographic twofold rotation axis.
Resumo:
The self-assembly of poly(di-n-butylsilane) (PDBS) and poly(di-n-hexylsilane) (PDHS) on the surfaces of amorphous carbon and highly oriented pyrolytic graphite (HOPG) have been investigated, respectively. The morphology and structures of these self-assembled thin films were studied by using atomic force microscopy, transmission electronic microscopy, and wide-angle X-ray diffraction. In the case of weak van der Waals interactions between absorbed molecules and substrate, i.e., on amorphous carbon, the self-assembly process was driven by absorbate-absorbate intermolecular interactions. For PDBS with weak absorbate-absorbate intermolecular interactions, the thin film showed organization lacking any measurable preferred orientation on the surface of amorphous carbon. While for PDHS with rigid backbone and strong intermolecular interactions, flat-on lamellae with silicon backbones perpendicular to the surface of amorphous carbon were formed. However, in the case of strong van der Waals interactions between absorbed molecules and substrate, i.e., on HOPG, the self-assembly process was tailored by the balance of absorbate-absorbate intermolecular interactions and molecule-substrate interactions. Both PDHS and PDBS thin films grew into edge-on lamellae on the surface of HOPG, which aligned according to a Mold symmetry.
Resumo:
Nanostructure and morphology and their development of poly(di-n-hexylsilane) (PDHS) and poly(di-n-butylsilane) (PDBS) during the crystal-mesophase transition are investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction and hot-stage atomic force microscopy. At room temperature, PDHS consists of stacks of lamellae separated by mesophase layers, which can be well accounted using an ideal two-phase model. During the crystal-mesophase transition, obvious morphological changes are observed due to the marked changes in main chain conformation and intermolecular distances between crystalline phase and mesophase. In contrast to PDHS, the lamellae in PDBS barely show anisotropy in dimensions at room temperature. The nonperiodic structure and rather small electronic density fluctuation in PDBS lead to the much weak SAXS. The nonperiodic structure is preserved during the crystal-mesophase transition because of the similarity of main chain conformation and intermolecular distances between crystalline phase and mesophase.
Resumo:
Reactions of Rh and Ir hydrido complexes. [Rh(H)(2)(PPh3)(2)(solv)(EtOH)]ClO4 (solv = Me2CO, 1a; EtOH, 1b) and [Ir(H)(2)(PPh3)(2)(Me2CO)(2)]BF4 (2), with various N,N'-donor bridging ligands, such as pyrazine (pyz), 4,4'-trimethylenedipyridine (tmdp) and di(4-pyridyl) disulfide (dpds), in some solvents were examined, and their reaction products were characterized by X-ray crystal structure analysis. IR, H-1 NMR and UV-vis spectra. Rh hydrido complexes, la or 1b, formed a dinuclear Rh complex, [Rh-2(PPh3)(2) {(eta(6)-C6H5PPh2}(2)] (ClO4)(2).6CH(2)Cl(2) (3.6CH(2)Cl(2)), in dichloromethane with a reductive elimination of hydrogen. The reactions of 1a or 1b with the pyz ligand in dichloromethane and tetrahydrofuran gave triangular Rh-3 complexes, [Rh-3(PPh3)(6)(pyz)(3)](ClO4)(3).CH2Cl2 (5.CH2Cl2) and [Rh-3(PPh3)(6)(pyz)(3)](ClO4)(3).EtOH (5.EtOH), respectively, in contrast to the formation of a dinuclear Rh hydrido complex, [Rh-2(H)(4)(PPh3)(4)(Me2CO)(2)(pyz)](ClO4)(2).EtOH A-EtOH). in acetone. The reactions of la or 1b with the tmdp ligand in dichloromethane and 3-methyl-2-butanone also afforded dinuclear Rh complexes, [Rh-2(PPh3)(4)(tmdp)(2)](ClO4)(2) (6) and [Rh-2(PPh3)(4)(tmdp)(2)](ClO4)(2).4MeCOCHMe(2) (6.4MeCOCHMe(2)), respectively. On the other hand, Ir hydrido complex 2 reacted with pyz and dpds ligands in dichloromethane to afford dinuclear Ir complexes, [Ir-2(H)(4)(PPh3)(4)(Me2CO)(2)(pyz)]- (BF4)(2).3CH(2)Cl(2) (7.3CH(2)Cl(2)) and [Ir-2(H)(4)(PPh3)(4)(dpds)(2)](BF4)(2).3CH(2)Cl(2).H2O (8.3CH(2)Cl(2).H2O), respectively, without any reductive elimination of hydrogen. Based on structural studies in solution and in the solid state. it was demonstrated that various Rh and Ir complexes were selectively produced depending on the choice of solvents and N,N'-donor bridging ligands.
Resumo:
The hexafluorophosphate salts [Fe((C5H4Bu)-Bu-t)(2)]PF6 (1) and [Co((C5H4Bu)-Bu-t)(2)]PF6 (2) crystallize in isotypic structures with centrosymmetric cations which have a staggered (transoid) conformation of the exactly parallel ring Ligands (conformational angle tau = 180 degrees). The tetrachlorocobaltate salt, [CO((C5H4Bu)-Bu-t)(2)](2)CoCl4 (3), contains one almost eclipsed (tau = 140.4 degrees) and one almost staggered (tau = 101.4 degrees) cobaltocenium cation; in both cases, the cyclopentadienyl ring planes are slightly inclined (by alpha = 5.4 degrees and 4.1 degrees, respectively) to give more room to the tert-butyl substituents which are bent away from the metal in all three complexes 1 - 3.
Resumo:
The ferric oxide nanoparticles-tris-(2,4-di-t-amylphenoxy)-(8-quinolinolyl) copper phthalocyanine (CuPcA(2)) composite ultrathin film was obtained by LB (Langmuir-Blodgett) technique. Structure of the composite LB film was characterized by X-ray photoelectron spectra, transmission electron microscopy, infrared spectra and visible spectra. Gas sensitivity measurements indicate that the composite LB film is sensitive to 100-200 ppm C2H5OH at room temperature. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Never di- and trinuclear Rh complexes, [Rh-2(PPh3)(4)(H)(4)(Me2CO)(2)(mu -pyz)](ClO4)(2). EtOH and [Rh-3(PPh3),(mu -pyz)(3)](ClO4)(3). EtOH were selectively isolated from the reaction of [Rh(PPh3)(2)(H)(2)(Me2Co)(EtOH)]ClO4 with pyrazine (pyz) in Me2CO and THF, respectively. Their structures were crystallographically characterized.
Resumo:
Mixed Langmuir-Blodgett films of tri-(2,4-di-t-amylphenoxy)-(8-quinolinolyl) copper phthalocyanine and water-soluble fullerenols are prepared. Their behavior at the air-water interface and the monolayer morphology are studied. (C) 1998 Elsevier Science Limited. All rights reserved.
Resumo:
Extraction resins, of the type of;levextrel, (which is a collective term for styrene/divinylbenzene based copolymers of predominantly macroporous structure that contain a selective extractant) are important for the recovery and separation of metal ions, as they combine features of solvent extraction and ion exchange resins. This paper presents the results of the adsorption of heavy rare earth ions (Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III)) from hydrochloric acid solutions at 0.2 mol/L ionic strength and 50 degrees C by the extraction resin containing di (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272) and the chromatographic separation of (Er(III), Tm(III) and Yb(III)). Technological separation products, with purity and yield of Tm2O3 >99.97%, >80%, Er2O3 >99.9%, >94% and Yb2O3 >99.8%, >80% respectively, have been obtained from a feed having the composition Tm2O3 60%, Er2O3 10%, and Yb2O3 3%, the others 27%. The distribution coefficients, extraction equilibrium constants and separation factors have been determined as a function of acidity, loading of the resin and rare earths, flow rates and column ratios. The resolutions and efficiencies of separation of Er/Tm/Yb each other have been calculated. The stoichiometry of the extraction of rare earth ions has been suggested as well.
Resumo:
Dinuclear complexes [Mo-2(mu-pyS)(2)(CO)(4)(PPh(3))(2)] (1), [Mo-2(mu-pyS)(2)(CO)(5)(PPh(3))] (2) and a trace quality of trinuclear complex [Mo-3(mu-pyS)(2)(mu(3)-pyS)(2)(CO)(6)] (3) were obtained from the reaction of [Mo(CO)(3)(MeCN)(3)] with pyridine-2-thione (pySH) and PPh(3) in THF. The crystal structures of 1.2C(7)H(8) and 3.7 C7H8 have been determined by X-ray diffraction studies. Crystals of 1.2C(7)H(8) are monoclinic, space group C2/c and Z = 4, with a = 18.797(3), b = 11.143(4), c = 28.157(7) Angstrom, beta = 101.23(2)degrees. The structure was refined to R = 0.050 and Rw = 0.057 for 3146 observed reflections, Crystals of 3.7 C7H8 are monoclinic, space group P2(1)/a and Z = 4, with a = 13.912(2), b = 17.161(2), c = 15.577(3) Angstrom, beta = 101.17(1)degrees. The structure was refined to R = 0.046 and Rw = 0.051 for 4357 observed reflections. The molecule of 1 consists of two Mo(CO)(2)(PPh(3)) fragments linked by an Mo-Mo bond (2.974(2)Angstrom) and by two doubly-bridging pyS ligands. The compound 3 contains a bent open geometry of three molybdenum atoms (Mo(1)-Mo(2)-Mo(3) angle 122.99(3)degrees) linked by two Mo-Mo bonds (2.943(1) and 2.950(1) Angstrom) and by two doubly- and two triply-bridging pyS ligands.
Resumo:
The gold electrodes modified with 2-picolinic acid , nicotinic acid, iso-nicotinic or thiophene were prepared using membrane transfer method, The electrochemistry of di-mu-oxodimanganese 2,2'-bipyridine complex was studied in the acetic acid buffer solution at different modified gold electrodes, It was found that the modifiers which can promote the electrochemical reaction of the complex should be of at least two functional groups, One group can be bound to the electrode surface and the other can form electron transfer pathway between the modifier and the complex through sal; bridge or hydrogen bond, In addition, the mechanism of the electrochemical reaction was discussed.
Resumo:
The polymerization of acrylonitrile initiated by organolanthanide complexes alone is studied for the first time. The effect df polymerization conditions on catalytic activity of the title complex and molecular weight of the polymers produced have been studied.
Resumo:
The title complex, bis(2,6-di-tert-butyl-4-methyl-phenolato-O)tris(tetrahydrofuran-O)samarium tetrahydrofuran solvate, [Sm(C15H23O)2(C4H8O)3].C4H8O, has distorted trigonal bipyramidal geometry around the Sm(II) atom. The 0(2), 0(3) and 0(4) atoms of the
Resumo:
The title complex was synthesized and characterized by H-1, C-13, Sn-119 NMR and IR spectra. A single crystal X-ray diffraction study confirmed its molecular structure and revealed that 3,4,5-trimethoxy-benzoyl salicylahydrazone was a tridentate and approximately planar ligand. The complex crystallizes in the triclinic space group P1BAR with a = 9.208(3), b = 12.536(2), c = 12.187(4) angstrom, alpha = 113.12(2), beta = 90.58(2), gamma = 81.42(2), V = 1277.5(6) angstrom, Z = 2. The structure was refined to R = 0.033 and R(w) = 0.041 for 3944 observed independent reflections. The tin atom has a distorted trigonal bipyramidal coordination. The Sn-C bond lengths are 2.129(5) and 2.113(5) angstrom (av. 2.121(5) angstrom), the C-Sn-C angle is 123.3(2); the bond length between the tin atom and the chelating nitrogen is 2.173(3) angstrom. Two chain carbon atoms and the chelating nitrogen atom occupy the basal plane. The skeleton of two erect oxygen atoms and the tin atom is bent (O-Sn-O angle = 153.5(1)). In the complex, the ligand exists in the enol-form.