926 resultados para Bees - Foraging behaviour
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The behaviour and morphology of dwarf gynes produced in worker-sized cells of normal colonies in Nannotrigona testaceicornis (Meliponinae, Trigonini) were studied. The behaviour of these dwarf virgin queens was the same as observed for normal Trigonine gynes. The glandular equipment is also the same: Dufour glands, fat bodies and spermathecae are present. Despite these similarities, their ovaries are different. The functional significance of dwarf gynes is unknown, but may be a basis for an alternative reproductive strategy.
Resumo:
Ants are often attracted to diaspores not adapted for dispersal by ants. These diaspores may occasionally benefit from this interaction. We selected six nonmyrmecochorous plant species (Virola oleifera, Eugenia stictosepala, Cabralea canjerana, Citharexylum myrianthum, Alchornea glandulosa and Hyeronima alchorneoides) whose diaspores differ in size and lipid content, and investigated how these features affect the outcome of ant-diaspore interactions on the floor of a lowland Atlantic forest of Southeast Brazil. A total of 23 ant species were seen interacting with diaspores on the forest floor. Ants were generally rapid at discovering and cleaning the diaspore pulp or aril. Recruitment rate and ant attendance were higher for lipid-rich diaspores than for lipid-poor ones. Removal rate and displacement distance were higher for small diaspores. The large ponerine ant Pachycondyla striata, one of the most frequent attendants to lipid-rich arillate diaspores, transported the latter into their nests and discarded clean intact seeds on refuse piles outside the nest. Germination tests with cleaned and uncleaned diaspores revealed that the removal of pulp or aril may increase germination success in Virola oleifera, Cabralea canjerana, Citharexylum myrianthum and Alchornea glandulosa. Gas chromatography analyses revealed a close similarity in the fatty acid composition of the arils of the lipid-rich diaspores and the elaiosome of a typical myrmecochorous seed (Ricinus communis), corroborating the suggestion that some arils and elaiosomes are chemically similar. Although ant-derived benefits to diaspores - secondary dispersal and/or increased germination - varied among the six plant species studied, the results enhanced the role of ant-diaspore interactions in the post-dispersal fates of nonmyrmecochorous seeds in tropical forests. The size and the lipid-content of the diaspores were shown to be major determinants of the outcome of such interactions.
Resumo:
Background It is generally accepted that material collected by leaf-cutting ants of the genus Acromyrmex consists solely of plant matter, which is used in the nest as substrate for a symbiotic fungus providing nutrition to the ants. There is only one previous report of any leaf-cutting ant foraging directly on fungal basidiocarps. Findings Basidiocarps of Psilocybe coprophila growing on cow dung were actively collected by workers of Acromyrmex lobicornis in Santa Fé province, Argentina. During this behaviour the ants displayed typical signals of recognition and continuously recruited other foragers to the task. Basidiocarps of different stages of maturity were being transported into the nest by particular groups of workers, while other workers collected plant material. Conclusions The collection of mature basidiocarps with viable spores by leaf-cutting ants in nature adds substance to theories relating to the origin of fungiculture in these highly specialized social insects. © 2013 Masiulionis et al.
Costs and benefits of freezing behaviour in the harvestman Eumesosoma roeweri (Arachnida, Opiliones)
Resumo:
Animals present an enormous variety of behavioural defensive mechanisms, which increase their survival, but often at a cost. Several animal taxa reduce their chances of being detected and/or recognized as prey items by freezing (remaining completely motionless) in the presence of a predator. We studied costs and benefits of freezing in immature Eumesosoma roeweri (Opiliones, Sclerosomatidae). Preliminary observations showed that these individuals often freeze in the presence of the syntopic predatory spider Schizocosa ocreata (Araneae, Lycosidae). We verified that harvestmen paired with predators spent more time freezing than when alone or when paired with a conspecific. Then. we determined that predator chemical cues alone did not elicit freezing behaviour. Next, we examined predator behaviour towards moving/non-moving prey and found that spiders attacked moving prey significantly more, suggesting an advantage of freezing in the presence of a predator. Finally, as measure of the foraging costs of freezing, we found that individuals paired with a predator for 2 h gained significantly less weight than individuals paired with a conspecific or left alone. Taken together, our results suggest that freezing may protect E. roeweri harvestmen from predatory attacks by wolf spiders, but at the cost of reduced food and/or water intake. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Pollen analysis in honey can be used as an alternative method to research into flowers visited by bees in an area. This study aimed to indentify the main floral families in honey from apiaries in the Atlantic Forest and Sergipe state coast. Honey samples from these apiaries were studied, as well as plants that grow around them, which can be used as a source of foraging for bees. The palynological technique was used to compare the pollen content of honey samples with the pollen grains from leaves of plants found in the vicinity of the apiaries to assess whether they had been visited by bees. The results of studies in both sites were similar in terms of incompatibility of families found in the apiary vicinity and honey. Thus, it was possible to observe that in honey samples from the coast and in the remaining Atlantic forest, the number of families was greater than the number of families found in the apiary vicinity, which highlights the diversity of plants visited by bees and a possible expansion of the visited area for food search. This diversity suggests an adaptive foraging behavior to plant resources available in the environment, which may facilitate the pollination of these botanical families and consequently improve their genetic quality.
Resumo:
Pollen traps used for harvesting pollen from Apis mellifera do not work for stingless bees, as most species have small entrances and rapidly deposit large quantities of propolis at any barrier in front of the nest. Some stingless beekeepers harvest pollen by removing it directly from pollen pots, but this pollen is normally fermented and unpalatable. The aim of this study was to test a new method for harvesting pollen from stingless bee colonies before it begins to ferment. Colonies of Scaptotrigona depilis were removed and replaced by empty hives, which were occupied by the returning foragers and used for storing pollen and nectar. After one week, the pollen and honey were harvested directly from the storing pots and weighed. On average, the colonies produced 8.7 g of honey and 54.2 g of unfermented pollen (n = 10). This method is a viable option for harvesting unfermented pollen from stingless bees, especially with species that harvest large amounts of pollen. The unfermented pollen of S. depilis was well received in taste tests, receiving higher scores than fermented pollen, and similar scores to A. mellifera pollen, so could have great commercial possibilities. It is also a good method for studying the foraging of stingless bees because the amount of harvested food can be easily and precisely quantified.
Resumo:
Flowers attract honeybees using colour and scent signals. Bimodality (having both scent and colour) in flowers leads to increased visitation rates, but how the signals influence each other in a foraging situation is still quite controversial. We studied four basic questions: When faced with conflicting scent and colour information, will bees choose by scent and ignore the “wrong” colour, or vice versa? To get to the bottom of this question, we trained bees on scent-colour combination AX (rewarded) versus BY (unrewarded) and tested them on AY (previously rewarded colour and unrewarded scent) versus BX (previously rewarded scent and unrewarded colour). It turned out that the result depends on stimulus quality: if the colours are very similar (unsaturated blue and blue-green), bees choose by scent. If they are very different (saturated blue and yellow), bees choose by colour. We used the same scents, lavender and rosemary, in both cases. Our second question was: Are individual bees hardwired to use colour and ignore scent (or vice versa), or can this behaviour be modified, depending on which cue is more readily available in the current foraging context? To study this question, we picked colour-preferring bees and gave them extra training on scent-only stimuli. Afterwards, we tested if their preference had changed, and if they still remembered the scent stimulus they had originally used as their main cue. We came to the conclusion that a colour preference can be reversed through scent-only training. We also gave scent-preferring bees extra training on colour-only stimuli, and tested for a change in their preference. The number of animals tested was too small for statistical tests (n = 4), but a common tendency suggested that colour-only training leads to a preference for colour. A preference to forage by a certain sensory modality therefore appears to be not fixed but flexible, and adapted to the bee’s surroundings. Our third question was: Do bees learn bimodal stimuli as the sum of their parts (elemental learning), or as a new stimulus which is different from the sum of the components’ parts (configural learning)? We trained bees on bimodal stimuli, then tested them on the colour components only, and the scent components only. We performed this experiment with a similar colour set (unsaturated blue and blue-green, as above), and a very different colour set (saturated blue and yellow), but used lavender and rosemary for scent stimuli in both cases. Our experiment yielded unexpected results: with the different colours, the results were best explained by elemental learning, but with the similar colour set, bees exhibited configural learning. Still, their memory of the bimodal compound was excellent. Finally, we looked at reverse-learning. We reverse-trained bees with bimodal stimuli to find out whether bimodality leads to better reverse-learning compared to monomodal stimuli. We trained bees on AX (rewarded) versus BY (unrewarded), then on AX (unrewarded) versus BY (rewarded), and finally on AX (rewarded) and BY (unrewarded) again. We performed this experiment with both colour sets, always using the same two scents (lavender and rosemary). It turned out that bimodality does not help bees “see the pattern” and anticipate the switch. Generally, bees trained on the different colour set performed better than bees trained on the similar colour set, indicating that stimulus salience influences reverse-learning.
Resumo:
Floral scents are important information cues used to organize foraging-related tasks in honeybees. The waggle dance, apart from encoding spatial information about food sources, might facilitate the transfer of olfactory information by increasing the dissipation of volatiles brought back by successful foragers. By assuming that food scents are more intensive on specific body parts of returning foragers, i.e., the posterior legs of pollen foragers and mouthparts of nectar foragers, we quantified the interactions between hive mates and foragers during dances advertising different types of food sources. For natural sources, a higher proportion of hive mates contacted the hind legs of pollen dancers (where the pollen loads were located) with their heads compared to non-pollen dancers. On the other hand, the proportion of head-to-head contacts was higher for non-pollen foragers during the waggle runs. When the food scent was manipulated, dancers collecting scented sugar solution had a higher proportion of head-to-head contacts and a lower proportion around their hind legs compared to dancers collecting unscented solution. The presence of food odors did not affect in-hive behaviors of dancers, but it increased the number of trophallaxes in-between waggle runs (i.e., during circle phases). These results suggest that the honeybee dance facilitates the olfactory information transfer between incoming foragers and hive mates, and we propose that excitatory displays in other social insect species serve the same purpose. While recent empirical and theoretical findings suggested that the colony level foraging benefits of the spatial information encoded in the waggle dance vary seasonally and with habitats, the role of the dance as a compound signal not only indicating the presence of a profitable resource but also amplifying the information transfer regarding floral odors may be important under any ecological circumstances.
Resumo:
In honeybees (Apis niellifera), the process of nectar collection is considered a straightforward example of task partitioning with two subtasks or two intersecting cycles of activity: (1) foraging and (2) storing of nectar, linked via its transfer between foragers and food processors. Many observations suggest, however, that nectar colleclion and processing in honeybees is a complex process, involving workers of other sub-castes and depending on variables such as resource profitability or the amount of stored honey. It has been observed that food processor bees often distribute food to other hive bees after receiving it from incoming foragers, instead of storing it immediately in honey cells. While there is little information about the sub-caste affiliation and the behaviour of these second-order receivers, this stage may be important for the rapid distribution of nutrients and related information. To investigate the identity of these second-order receivers, we quantified behaviours following nectar transfer and compared these behaviours with the behaviour of average worker hive-bees. Furthermore, we tested whether food quality (sugar concentration) affects the behaviour of the second-order receivers. Of all identified second-order receivers, 59.3% performed nurse duties, 18.5% performed food-processor duties and 22.2% performed forager duties. After food intake, these bees were more active, had more trophallaxes (especially offering contacts) compared to average workers and they were found mainly in the brood area, independent of food quality. Our results show that the liquid food can be distributed rapidly among many bees of the three main worker sub-castes, without being stored in honey cells first. Furthermore, the results suggest that the rapid distribution of food partly depends on the high activity of second-order receivers.
Resumo:
Migration has evolved as a strategy to maximise individual fitness in response to seasonally changing ecological and environmental conditions. However, migration can also incur costs, and quantifying these costs can provide important clues to the ultimate ecological forces that underpin migratory behaviour. A key emerging model to explain migration in many systems posits that migration is driven by seasonal changes to a predation/growth potential (p/g) trade-off that a wide range of animals face. In this study we assess a key assumption of this model for a common cyprinid partial migrant, the roach Rutilus rutilus, which migrates from shallow lakes to streams during winter. By sampling fish from stream and lake habitats in the autumn and spring and measuring their stomach fullness and diet composition, we tested if migrating roach pay a cost of reduced foraging when migrating. Resident fish had fuller stomachs containing more high quality prey items than migrant fish. Hence, we document a feeding cost to migration in roach, which adds additional support for the validity of the p/g model of migration in freshwater systems.
Resumo:
Many insect herbivores feed on belowground plant tissues. In this chapter, we discuss how they have adapted to deal with root primary and secondary metabolites. It is becoming evident that root herbivores can use root volatiles and exudates for host location and foraging. Their complex sensory apparatus suggests a sophisticated recognition and signal transduction system. Furthermore, endogenous metabolites trigger attractive or repellent responses in root feeders, indicating that they may specifically fine-tune food uptake to meet their dietary needs. Little evidence for direct toxic effects of root secondary metabolites has accumulated so far, indicating high prevalence of tolerance mechanisms. Root herbivores furthermore facilitate the entry of soil microbes into the roots, which may influence root nutritional quality. Investigating the role of plant metabolites in an ecologically and physiologically relevant context will be crucial to refine our current models on root-herbivore physiology and behaviour in the future.
Resumo:
Interactions between pesticides and parasites are believed to be responsible for increased mortality of honey bee (Apis mellifera) colonies in the northern hemisphere. Previous efforts have employed experimental approaches using small groups under laboratory conditions to investigate influence of these stressors on honey bee physiology and behaviour, although both the colony level and field conditions play a key role for eusocial honey bees. Here, we challenged honey bee workers under in vivo colony conditions with sublethal doses of the neonicotinoid thiacloprid, the miticide tau-fluvalinate and the endoparasite Nosema ceranae, to investigate potential effects on longevity and behaviour using observation hives. In contrast to previous laboratory studies, our results do not suggest interactions among stressors, but rather lone effects of pesticides and the parasite on mortality and behaviour, respectively. These effects appear to be weak due to different outcomes at the two study sites, thereby suggesting that the role of thiacloprid, tau-fluvalinate and N. ceranae and interactions among them may have been overemphasized. In the future, investigations into the effects of honey bee stressors should prioritize the use of colonies maintained under a variety of environmental conditions in order to obtain more biologically relevant data.