939 resultados para Bayesian belief network
Resumo:
Latent variable models for network data extract a summary of the relational structure underlying an observed network. The simplest possible models subdivide nodes of the network into clusters; the probability of a link between any two nodes then depends only on their cluster assignment. Currently available models can be classified by whether clusters are disjoint or are allowed to overlap. These models can explain a "flat" clustering structure. Hierarchical Bayesian models provide a natural approach to capture more complex dependencies. We propose a model in which objects are characterised by a latent feature vector. Each feature is itself partitioned into disjoint groups (subclusters), corresponding to a second layer of hierarchy. In experimental comparisons, the model achieves significantly improved predictive performance on social and biological link prediction tasks. The results indicate that models with a single layer hierarchy over-simplify real networks.
Resumo:
We present algorithms for tracking and reasoning of local traits in the subsystem level based on the observed emergent behavior of multiple coordinated groups in potentially cluttered environments. Our proposed Bayesian inference schemes, which are primarily based on (Markov chain) Monte Carlo sequential methods, include: 1) an evolving network-based multiple object tracking algorithm that is capable of categorizing objects into groups, 2) a multiple cluster tracking algorithm for dealing with prohibitively large number of objects, and 3) a causality inference framework for identifying dominant agents based exclusively on their observed trajectories.We use these as building blocks for developing a unified tracking and behavioral reasoning paradigm. Both synthetic and realistic examples are provided for demonstrating the derived concepts. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
A partially observable Markov decision process has been proposed as a dialogue model that enables robustness to speech recognition errors and automatic policy optimisation using reinforcement learning (RL). However, conventional RL algorithms require a very large number of dialogues, necessitating a user simulator. Recently, Gaussian processes have been shown to substantially speed up the optimisation, making it possible to learn directly from interaction with human users. However, early studies have been limited to very low dimensional spaces and the learning has exhibited convergence problems. Here we investigate learning from human interaction using the Bayesian Update of Dialogue State system. This dynamic Bayesian network based system has an optimisation space covering more than one hundred features, allowing a wide range of behaviours to be learned. Using an improved policy model and a more robust reward function, we show that stable learning can be achieved that significantly outperforms a simulator trained policy. © 2013 IEEE.
Resumo:
Koven, M. (2007). Most Haunted and the Convergence of Traditional Belief and Popular Television. Folklore. 118(2), pp.183-202. RAE2008
Resumo:
(This Technical Report revises TR-BUCS-2003-011) The Transmission Control Protocol (TCP) has been the protocol of choice for many Internet applications requiring reliable connections. The design of TCP has been challenged by the extension of connections over wireless links. In this paper, we investigate a Bayesian approach to infer at the source host the reason of a packet loss, whether congestion or wireless transmission error. Our approach is "mostly" end-to-end since it requires only one long-term average quantity (namely, long-term average packet loss probability over the wireless segment) that may be best obtained with help from the network (e.g. wireless access agent).Specifically, we use Maximum Likelihood Ratio tests to evaluate TCP as a classifier of the type of packet loss. We study the effectiveness of short-term classification of packet errors (congestion vs. wireless), given stationary prior error probabilities and distributions of packet delays conditioned on the type of packet loss (measured over a larger time scale). Using our Bayesian-based approach and extensive simulations, we demonstrate that congestion-induced losses and losses due to wireless transmission errors produce sufficiently different statistics upon which an efficient online error classifier can be built. We introduce a simple queueing model to underline the conditional delay distributions arising from different kinds of packet losses over a heterogeneous wired/wireless path. We show how Hidden Markov Models (HMMs) can be used by a TCP connection to infer efficiently conditional delay distributions. We demonstrate how estimation accuracy is influenced by different proportions of congestion versus wireless losses and penalties on incorrect classification.
Resumo:
One of TCP's critical tasks is to determine which packets are lost in the network, as a basis for control actions (flow control and packet retransmission). Modern TCP implementations use two mechanisms: timeout, and fast retransmit. Detection via timeout is necessarily a time-consuming operation; fast retransmit, while much quicker, is only effective for a small fraction of packet losses. In this paper we consider the problem of packet loss detection in TCP more generally. We concentrate on the fact that TCP's control actions are necessarily triggered by inference of packet loss, rather than conclusive knowledge. This suggests that one might analyze TCP's packet loss detection in a standard inferencing framework based on probability of detection and probability of false alarm. This paper makes two contributions to that end: First, we study an example of more general packet loss inference, namely optimal Bayesian packet loss detection based on round trip time. We show that for long-lived flows, it is frequently possible to achieve high detection probability and low false alarm probability based on measured round trip time. Second, we construct an analytic performance model that incorporates general packet loss inference into TCP. We show that for realistic detection and false alarm probabilities (as are achievable via our Bayesian detector) and for moderate packet loss rates, the use of more general packet loss inference in TCP can improve throughput by as much as 25%.
Resumo:
The development and deployment of distributed network-aware applications and services over the Internet require the ability to compile and maintain a model of the underlying network resources with respect to (one or more) characteristic properties of interest. To be manageable, such models must be compact, and must enable a representation of properties along temporal, spatial, and measurement resolution dimensions. In this paper, we propose a general framework for the construction of such metric-induced models using end-to-end measurements. We instantiate our approach using one such property, packet loss rates, and present an analytical framework for the characterization of Internet loss topologies. From the perspective of a server the loss topology is a logical tree rooted at the server with clients at its leaves, in which edges represent lossy paths between a pair of internal network nodes. We show how end-to-end unicast packet probing techniques could b e used to (1) infer a loss topology and (2) identify the loss rates of links in an existing loss topology. Correct, efficient inference of loss topology information enables new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. We report on simulation, implementation, and Internet deployment results that show the effectiveness of our approach and its robustness in terms of its accuracy and convergence over a wide range of network conditions.
Resumo:
We recently developed an approach for testing the accuracy of network inference algorithms by applying them to biologically realistic simulations with known network topology. Here, we seek to determine the degree to which the network topology and data sampling regime influence the ability of our Bayesian network inference algorithm, NETWORKINFERENCE, to recover gene regulatory networks. NETWORKINFERENCE performed well at recovering feedback loops and multiple targets of a regulator with small amounts of data, but required more data to recover multiple regulators of a gene. When collecting the same number of data samples at different intervals from the system, the best recovery was produced by sampling intervals long enough such that sampling covered propagation of regulation through the network but not so long such that intervals missed internal dynamics. These results further elucidate the possibilities and limitations of network inference based on biological data.
Resumo:
This paper provides algorithms that use an information-theoretic analysis to learn Bayesian network structures from data. Based on our three-phase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional independence (CI) tests in typical cases. We provide precise conditions that specify when these algorithms are guaranteed to be correct as well as empirical evidence (from real world applications and simulation tests) that demonstrates that these systems work efficiently and reliably in practice.
Resumo:
Nonlinear models constructed from radial basis function (RBF) networks can easily be over-fitted due to the noise on the data. While information criteria, such as the final prediction error (FPE), can provide a trade-off between training error and network complexity, the tunable parameters that penalise a large size of network model are hard to determine and are usually network dependent. This article introduces a new locally regularised, two-stage stepwise construction algorithm for RBF networks. The main objective is to produce a parsomous network that generalises well over unseen data. This is achieved by utilising Bayesian learning within a two-stage stepwise construction procedure to penalise centres that are mainly interpreted by the noise.
Resumo:
Modern biology and medicine aim at hunting molecular and cellular causes of biological functions and diseases. Gene regulatory networks (GRN) inferred from gene expression data are considered an important aid for this research by providing a map of molecular interactions. Hence, GRNs have the potential enabling and enhancing basic as well as applied research in the life sciences. In this paper, we introduce a new method called BC3NET for inferring causal gene regulatory networks from large-scale gene expression data. BC3NET is an ensemble method that is based on bagging the C3NET algorithm, which means it corresponds to a Bayesian approach with noninformative priors. In this study we demonstrate for a variety of simulated and biological gene expression data from S. cerevisiae that BC3NET is an important enhancement over other inference methods that is capable of capturing biochemical interactions from transcription regulation and protein-protein interaction sensibly. An implementation of BC3NET is freely available as an R package from the CRAN repository. © 2012 de Matos Simoes, Emmert-Streib.
Resumo:
In this paper, we present a Bayesian approach to estimate a chromosome and a disorder network from the Online Mendelian Inheritance in Man (OMIM) database. In contrast to other approaches, we obtain statistic rather than deterministic networks enabling a parametric control in the uncertainty of the underlying disorder-disease gene associations contained in the OMIM, on which the networks are based. From a structural investigation of the chromosome network, we identify three chromosome subgroups that reflect architectural differences in chromosome-disorder associations that are predictively exploitable for a functional analysis of diseases.
Resumo:
BACKGROUND:
We have recently identified a number of Quantitative Trait Loci (QTL) contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA) muscle of each strain by RNA-Seq.
RESULTS:13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN). The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10) residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs) underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p<0.03).
CONCLUSION:Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.
Resumo:
Objective
To indirectly compare aflibercept, bevacizumab, dexamethasone, ranibizumab and triamcinolone for treatment of macular oedema secondary to central retinal vein occlusion using a network meta-analysis (NMA).
Design
NMA.
Data sources
The following databases were searched from January 2005 to March 2013: MEDLINE, MEDLINE In-process, EMBASE; CDSR, DARE, HTA, NHSEED, CENTRAL; Science Citation Index and Conference Proceedings Citation Index-Science.
Eligibility criteria for selecting studies
Only randomised controlled trials assessing patients with macular oedema secondary to central retinal vein occlusion were included. Studies had to report either proportions of patients gaining ≥3 lines, losing ≥3 lines, or the mean change in best corrected visual acuity. Two authors screened titles and abstracts, extracted data and undertook risk of bias assessment. Bayesian NMA was used to compare the different interventions.
Results
Seven studies, assessing five drugs, were judged to be sufficiently comparable for inclusion in the NMA. For the proportions of patients gaining ≥3 lines, triamcinolone 4 mg, ranibizumab 0.5 mg, bevacizumab 1.25 mg and aflibercept 2 mg had a higher probability of being more effective than sham and dexamethasone. A smaller proportion of patients treated with triamcinolone 4 mg, ranibizumab 0.5 mg or aflibercept 2 mg lost ≥3 lines of vision compared to those treated with sham. Patients treated with triamcinolone 4 mg, ranibizumab 0.5 mg, bevacizumab 1.25 mg and aflibercept 2 mg had a higher probability of improvement in the mean best corrected visual acuity compared to those treated with sham injections.
Conclusions
We found no evidence of differences between ranibizumab, aflibercept, bevacizumab and triamcinolone for improving vision. The antivascular endothelial growth factors (VEGFs) are likely to be favoured because they are not associated with steroid-induced cataract formation. Aflibercept may be preferred by clinicians because it might require fewer injections.
Resumo:
This work presents two new score functions based on the Bayesian Dirichlet equivalent uniform (BDeu) score for learning Bayesian network structures. They consider the sensitivity of BDeu to varying parameters of the Dirichlet prior. The scores take on the most adversary and the most beneficial priors among those within a contamination set around the symmetric one. We build these scores in such way that they are decomposable and can be computed efficiently. Because of that, they can be integrated into any state-of-the-art structure learning method that explores the space of directed acyclic graphs and allows decomposable scores. Empirical results suggest that our scores outperform the standard BDeu score in terms of the likelihood of unseen data and in terms of edge discovery with respect to the true network, at least when the training sample size is small. We discuss the relation between these new scores and the accuracy of inferred models. Moreover, our new criteria can be used to identify the amount of data after which learning is saturated, that is, additional data are of little help to improve the resulting model.