954 resultados para Bayesian Networks Elicitation GIS Integration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La estructura económica mundial, con centros de producción y consumo descentralizados y el consiguiente aumento en el tráfico de mercancías en todo el mundo, crea considerables problemas y desafíos para el sector del transporte de mercancías. Esta situación ha llevado al transporte marítimo a convertirse en el modo más económico y más adecuado para el transporte de mercancías a nivel global. De este modo, los puertos marítimos se configuran como nodos de importancia capital en la cadena de suministro al servir como enlace entre dos sistemas de transporte, el marítimo y el terrestre. El aumento de la actividad en los puertos marítimos produce tres efectos indeseables: el aumento de la congestión vial, la falta de espacio abierto en las instalaciones portuarias y un impacto ambiental significativo en los puertos marítimos. Los puertos secos nacen para favorecer la utilización de cada modo de transporte en los segmentos en que resultan más competitivos y para mitigar estos problemas moviendo parte de la actividad en el interior. Además, gracias a la implantación de puertos secos es posible discretizar cada uno de los eslabones de la cadena de transporte, permitiendo que los modos más contaminantes y con menor capacidad de transporte tengan itinerarios lo más cortos posible, o bien, sean utilizados únicamente para el transporte de mercancías de alto valor añadido. Así, los puertos secos se presentan como una oportunidad para fortalecer las soluciones intermodales como parte de una cadena integrada de transporte sostenible, potenciando el transporte de mercancías por ferrocarril. Sin embargo, su potencial no es aprovechado al no existir una metodología de planificación de la ubicación de uso sencillo y resultados claros para la toma de decisiones a partir de los criterios ingenieriles definidos por los técnicos. La decisión de dónde ubicar un puerto seco exige un análisis exhaustivo de toda la cadena logística, con el objetivo de transferir el mayor volumen de tráfico posible a los modos más eficientes desde el punto de vista energético, que son menos perjudiciales para el medio ambiente. Sin embargo, esta decisión también debe garantizar la sostenibilidad de la propia localización. Esta Tesis Doctoral, pretende sentar las bases teóricas para el desarrollo de una herramienta de Herramienta de Ayuda a la Toma de Decisiones que permita establecer la localización más adecuada para la construcción de puertos secos. Este primer paso es el desarrollo de una metodología de evaluación de la sostenibilidad y la calidad de las localizaciones de los puertos secos actuales mediante el uso de las siguientes técnicas: Metodología DELPHI, Redes Bayesianas, Análisis Multicriterio y Sistemas de Información Geográfica. Reconociendo que la determinación de la ubicación más adecuada para situar diversos tipos de instalaciones es un importante problema geográfico, con significativas repercusiones medioambientales, sociales, económicos, locacionales y de accesibilidad territorial, se considera un conjunto de 40 variables (agrupadas en 17 factores y estos, a su vez, en 4 criterios) que permiten evaluar la sostenibilidad de las localizaciones. El Análisis Multicriterio se utiliza como forma de establecer una puntuación a través de un algoritmo de scoring. Este algoritmo se alimenta a través de: 1) unas calificaciones para cada variable extraídas de información geográfica analizada con ArcGIS (Criteria Assessment Score); 2) los pesos de los factores obtenidos a través de un cuestionario DELPHI, una técnica caracterizada por su capacidad para alcanzar consensos en un grupo de expertos de muy diferentes especialidades: logística, sostenibilidad, impacto ambiental, planificación de transportes y geografía; y 3) los pesos de las variables, para lo que se emplean las Redes Bayesianas lo que supone una importante aportación metodológica al tratarse de una novedosa aplicación de esta técnica. Los pesos se obtienen aprovechando la capacidad de clasificación de las Redes Bayesianas, en concreto de una red diseñada con un algoritmo de tipo greedy denominado K2 que permite priorizar cada variable en función de las relaciones que se establecen en el conjunto de variables. La principal ventaja del empleo de esta técnica es la reducción de la arbitrariedad en la fijación de los pesos de la cual suelen adolecer las técnicas de Análisis Multicriterio. Como caso de estudio, se evalúa la sostenibilidad de los 10 puertos secos existentes en España. Los resultados del cuestionario DELPHI revelan una mayor importancia a la hora de buscar la localización de un Puerto Seco en los aspectos tenidos en cuenta en las teorías clásicas de localización industrial, principalmente económicos y de accesibilidad. Sin embargo, no deben perderse de vista el resto de factores, cuestión que se pone de manifiesto a través del cuestionario, dado que ninguno de los factores tiene un peso tan pequeño como para ser despreciado. Por el contrario, los resultados de la aplicación de Redes Bayesianas, muestran una mayor importancia de las variables medioambientales, por lo que la sostenibilidad de las localizaciones exige un gran respeto por el medio natural y el medio urbano en que se encuadra. Por último, la aplicación práctica refleja que la localización de los puertos secos existentes en España en la actualidad presenta una calidad modesta, que parece responder más a decisiones políticas que a criterios técnicos. Por ello, deben emprenderse políticas encaminadas a generar un modelo logístico colaborativo-competitivo en el que se evalúen los diferentes factores tenidos en cuenta en esta investigación. The global economic structure, with its decentralized production and the consequent increase in freight traffic all over the world, creates considerable problems and challenges for the freight transport sector. This situation has led shipping to become the most suitable and cheapest way to transport goods. Thus, ports are configured as nodes with critical importance in the logistics supply chain as a link between two transport systems, sea and land. Increase in activity at seaports is producing three undesirable effects: increasing road congestion, lack of open space in port installations and a significant environmental impact on seaports. These adverse effects can be mitigated by moving part of the activity inland. Implementation of dry ports is a possible solution and would also provide an opportunity to strengthen intermodal solutions as part of an integrated and more sustainable transport chain, acting as a link between road and railway networks. In this sense, implementation of dry ports allows the separation of the links of the transport chain, thus facilitating the shortest possible routes for the lowest capacity and most polluting means of transport. Thus, the decision of where to locate a dry port demands a thorough analysis of the whole logistics supply chain, with the objective of transferring the largest volume of goods possible from road to more energy efficient means of transport, like rail or short-sea shipping, that are less harmful to the environment. However, the decision of where to locate a dry port must also ensure the sustainability of the site. Thus, the main goal of this dissertation is to research the variables influencing the sustainability of dry port location and how this sustainability can be evaluated. With this objective, in this research we present a methodology for assessing the sustainability of locations by the use of Multi-Criteria Decision Analysis (MCDA) and Bayesian Networks (BNs). MCDA is used as a way to establish a scoring, whilst BNs were chosen to eliminate arbitrariness in setting the weightings using a technique that allows us to prioritize each variable according to the relationships established in the set of variables. In order to determine the relationships between all the variables involved in the decision, giving us the importance of each factor and variable, we built a K2 BN algorithm. To obtain the scores of each variable, we used a complete cartography analysed by ArcGIS. Recognising that setting the most appropriate location to place a dry port is a geographical multidisciplinary problem, with significant economic, social and environmental implications, we consider 41 variables (grouped into 17 factors) which respond to this need. As a case of study, the sustainability of all of the 10 existing dry ports in Spain has been evaluated. In this set of logistics platforms, we found that the most important variables for achieving sustainability are those related to environmental protection, so the sustainability of the locations requires a great respect for the natural environment and the urban environment in which they are framed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis presenta el diseño y la aplicación de una metodología que permite la determinación de los parámetros para la planificación de nodos e infraestructuras logísticas en un territorio, considerando además el impacto de estas en los diferentes componentes territoriales, así como en el desarrollo poblacional, el desarrollo económico y el medio ambiente, presentando así un avance en la planificación integral del territorio. La Metodología propuesta está basada en Minería de Datos, que permite el descubrimiento de patrones detrás de grandes volúmenes de datos previamente procesados. Las características propias de los datos sobre el territorio y los componentes que lo conforman hacen de los estudios territoriales un campo ideal para la aplicación de algunas de las técnicas de Minería de Datos, tales como los ´arboles decisión y las redes bayesianas. Los árboles de decisión permiten representar y categorizar de forma esquemática una serie de variables de predicción que ayudan al análisis de una variable objetivo. Las redes bayesianas representan en un grafo acíclico dirigido, un modelo probabilístico de variables distribuidas en padres e hijos, y la inferencia estadística que permite determinar la probabilidad de certeza de una hipótesis planteada, es decir, permiten construir modelos de probabilidad conjunta que presentan de manera gráfica las dependencias relevantes en un conjunto de datos. Al igual que con los árboles de decisión, la división del territorio en diferentes unidades administrativas hace de las redes bayesianas una herramienta potencial para definir las características físicas de alguna tipología especifica de infraestructura logística tomando en consideración las características territoriales, poblacionales y económicas del área donde se plantea su desarrollo y las posibles sinergias que se puedan presentar sobre otros nodos e infraestructuras logísticas. El caso de estudio seleccionado para la aplicación de la metodología ha sido la República de Panamá, considerando que este país presenta algunas características singulares, entra las que destacan su alta concentración de población en la Ciudad de Panamá; que a su vez a concentrado la actividad económica del país; su alto porcentaje de zonas protegidas, lo que ha limitado la vertebración del territorio; y el Canal de Panamá y los puertos de contenedores adyacentes al mismo. La metodología se divide en tres fases principales: Fase 1: Determinación del escenario de trabajo 1. Revisión del estado del arte. 2. Determinación y obtención de las variables de estudio. Fase 2: Desarrollo del modelo de inteligencia artificial 3. Construcción de los ´arboles de decisión. 4. Construcción de las redes bayesianas. Fase 3: Conclusiones 5. Determinación de las conclusiones. Con relación al modelo de planificación aplicado al caso de estudio, una vez aplicada la metodología, se estableció un modelo compuesto por 47 variables que definen la planificación logística de Panamá, el resto de variables se definen a partir de estas, es decir, conocidas estas, el resto se definen a través de ellas. Este modelo de planificación establecido a través de la red bayesiana considera los aspectos de una planificación sostenible: económica, social y ambiental; que crean sinergia con la planificación de nodos e infraestructuras logísticas. The thesis presents the design and application of a methodology that allows the determination of parameters for the planning of nodes and logistics infrastructure in a territory, besides considering the impact of these different territorial components, as well as the population growth, economic and environmental development. The proposed methodology is based on Data Mining, which allows the discovery of patterns behind large volumes of previously processed data. The own characteristics of the territorial data makes of territorial studies an ideal field of knowledge for the implementation of some of the Data Mining techniques, such as Decision Trees and Bayesian Networks. Decision trees categorize schematically a series of predictor variables of an analyzed objective variable. Bayesian Networks represent a directed acyclic graph, a probabilistic model of variables divided in fathers and sons, and statistical inference that allow determine the probability of certainty in a hypothesis. The case of study for the application of the methodology is the Republic of Panama. This country has some unique features: a high population density in the Panama City, a concentration of economic activity, a high percentage of protected areas, and the Panama Canal. The methodology is divided into three main phases: Phase 1: definition of the work stage. 1. Review of the State of the art. 2. Determination of the variables. Phase 2: Development of artificial intelligence model 3. Construction of decision trees. 4. Construction of Bayesian Networks. Phase 3: conclusions 5. Determination of the conclusions. The application of the methodology to the case study established a model composed of 47 variables that define the logistics planning for Panama. This model of planning established through the Bayesian network considers aspects of sustainable planning and simulates the synergies between the nodes and logistical infrastructure planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O Gás Natural Liquefeito (GNL) tem, aos poucos, se tornado uma importante opção para a diversificação da matriz energética brasileira. Os navios metaneiros são os responsáveis pelo transporte do GNL desde as plantas de liquefação até as de regaseificação. Dada a importância, bem como a periculosidade, das operações de transporte e de carga e descarga de navios metaneiros, torna-se necessário não só um bom plano de manutenção como também um sistema de detecção de falhas que podem ocorrer durante estes processos. Este trabalho apresenta um método de diagnose de falhas para a operação de carga e descarga de navios transportadores de GNL através da utilização de Redes Bayesianas em conjunto com técnicas de análise de confiabilidade, como a Análise de Modos e Efeitos de Falhas (FMEA) e a Análise de Árvores de Falhas (FTA). O método proposto indica, através da leitura de sensores presentes no sistema de carga e descarga, quais os componentes que mais provavelmente estão em falha. O método fornece uma abordagem bem estruturada para a construção das Redes Bayesianas utilizadas na diagnose de falhas do sistema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente estudo tem como objetivo comparar a eficiência dos sistemas de transporte público e individual através da modelagem de redes em SIG. Foram revisados os conceitos de acessibilidade e indicadores de acessibilidade, modelos de rede de transportes, abordadas as etapas para criação dos modelos de rede, bases de dados utilizadas, configurações e atributos no sistema SIG. Os comparativos foram realizados através de dois níveis de detalhamento (simples e avançado) para as redes de transporte e elaborados índices de acessibilidade para os bairros do município de São Paulo através de parâmetros extraídos das redes modeladas. O estudo de caso consiste na medição de um índice de acessibilidade para empregos de baixa renda. Como resultado, os bairros centrais do município apresentam maior acessibilidade, porém, para o transporte público, alguns bairros fora da zona central também apresentaram alta acessibilidade devido à oferta de transporte público (metrô).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model was developed to investigate the relationships among subordinate-manager gender combinations, perceived leadership style, experienced frustration and optimism, organization-based self-esteem and organizational commitment. The model was tested within the context of a probabilistic structural model, a discrete Bayesian network, using cross-sectional data from a global pharmaceutical company. The Bayesian network allowed forward inference to assess the relative influence of gender combination and leadership style on the emotions, self-esteem and commitment consequence variables. Further, diagnostics from backward inference were used to assess the relative influence of variables antecedent to organizational commitment. The results showed that gender combination was independent of leadership style and had a direct impact on subordinates' levels of frustration and optimism. Female manager-female subordinate had the largest probability of optimism, while male manager teamed with a male subordinate had the largest probability of frustration. Furthermore, having a female manager teamed up with a male subordinate resulted in the lowest possibility of frustration. However, the findings show that the gender issue is not simply female managers versus male managers, but is concerned with the interaction of the subordinate-manager gender combination and leadership style in a nonlinear manner. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on Bayesian Networks, methods were created that address protein sequence-based bacterial subcellular location prediction. Distinct predictive algorithms for the eight bacterial subcellular locations were created. Several variant methods were explored. These variations included differences in the number of residues considered within the query sequence - which ranged from the N-terminal 10 residues to the whole sequence - and residue representation - which took the form of amino acid composition, percentage amino acid composition, or normalised amino acid composition. The accuracies of the best performing networks were then compared to PSORTB. All individual location methods outperform PSORTB except for the Gram+ cytoplasmic protein predictor, for which accuracies were essentially equal, and for outer membrane protein prediction, where PSORTB outperforms the binary predictor. The method described here is an important new approach to method development for subcellular location prediction. It is also a new, potentially valuable tool for candidate subunit vaccine selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate protein structure prediction remains an active objective of research in bioinformatics. Membrane proteins comprise approximately 20% of most genomes. They are, however, poorly tractable targets of experimental structure determination. Their analysis using bioinformatics thus makes an important contribution to their on-going study. Using a method based on Bayesian Networks, which provides a flexible and powerful framework for statistical inference, we have addressed the alignment-free discrimination of membrane from non-membrane proteins. The method successfully identifies prokaryotic and eukaryotic α-helical membrane proteins at 94.4% accuracy, β-barrel proteins at 72.4% accuracy, and distinguishes assorted non-membranous proteins with 85.9% accuracy. The method here is an important potential advance in the computational analysis of membrane protein structure. It represents a useful tool for the characterisation of membrane proteins with a wide variety of potential applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a novel and potentially important tool for candidate subunit vaccine selection through in silico reverse-vaccinology. A set of Bayesian networks able to make individual predictions for specific subcellular locations is implemented in three pipelines with different architectures: a parallel implementation with a confidence level-based decision engine and two serial implementations with a hierarchical decision structure, one initially rooted by prediction between membrane types and another rooted by soluble versus membrane prediction. The parallel pipeline outperformed the serial pipeline, but took twice as long to execute. The soluble-rooted serial pipeline outperformed the membrane-rooted predictor. Assessment using genomic test sets was more equivocal, as many more predictions are made by the parallel pipeline, yet the serial pipeline identifies 22 more of the 74 proteins of known location.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial lipoproteins have many important functions and represent a class of possible vaccine candidates. The prediction of lipoproteins from sequence is thus an important task for computational vaccinology. Naïve-Bayesian networks were trained to identify SpaseII cleavage sites and their preceding signal sequences using a set of 199 distinct lipoprotein sequences. A comprehensive range of sequence models was used to identify the best model for lipoprotein signal sequences. The best performing sequence model was found to be 10-residues in length, including the conserved cysteine lipid attachment site and the nine residues prior to it. The sensitivity of prediction for LipPred was 0.979, while the specificity was 0.742. Here, we describe LipPred, a web server for lipoprotein prediction; available at the URL: http://www.jenner.ac.uk/LipPred/. LipPred is the most accurate method available for the detection of SpaseIIcleaved lipoprotein signal sequences and the prediction of their cleavage sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our approach for knowledge presentation is based on the idea of expert system shell. At first we will build a graph shell of both possible dependencies and possible actions. Then, reasoning by means of Loglinear models, we will activate some nodes and some directed links. In this way a Bayesian network and networks presenting loglinear models are generated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature selection is important in medical field for many reasons. However, selecting important variables is a difficult task with the presence of censoring that is a unique feature in survival data analysis. This paper proposed an approach to deal with the censoring problem in endovascular aortic repair survival data through Bayesian networks. It was merged and embedded with a hybrid feature selection process that combines cox's univariate analysis with machine learning approaches such as ensemble artificial neural networks to select the most relevant predictive variables. The proposed algorithm was compared with common survival variable selection approaches such as; least absolute shrinkage and selection operator LASSO, and Akaike information criterion AIC methods. The results showed that it was capable of dealing with high censoring in the datasets. Moreover, ensemble classifiers increased the area under the roc curves of the two datasets collected from two centers located in United Kingdom separately. Furthermore, ensembles constructed with center 1 enhanced the concordance index of center 2 prediction compared to the model built with a single network. Although the size of the final reduced model using the neural networks and its ensembles is greater than other methods, the model outperformed the others in both concordance index and sensitivity for center 2 prediction. This indicates the reduced model is more powerful for cross center prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The ultimate problem considered in this thesis is modeling a high-dimensional joint distribution over a set of discrete variables. For this purpose, we consider classes of context-specific graphical models and the main emphasis is on learning the structure of such models from data. Traditional graphical models compactly represent a joint distribution through a factorization justi ed by statements of conditional independence which are encoded by a graph structure. Context-speci c independence is a natural generalization of conditional independence that only holds in a certain context, speci ed by the conditioning variables. We introduce context-speci c generalizations of both Bayesian networks and Markov networks by including statements of context-specific independence which can be encoded as a part of the model structures. For the purpose of learning context-speci c model structures from data, we derive score functions, based on results from Bayesian statistics, by which the plausibility of a structure is assessed. To identify high-scoring structures, we construct stochastic and deterministic search algorithms designed to exploit the structural decomposition of our score functions. Numerical experiments on synthetic and real-world data show that the increased exibility of context-specific structures can more accurately emulate the dependence structure among the variables and thereby improve the predictive accuracy of the models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As emoções são consideradas a regra central de nossas vidas, tendo grande impacto na tomada de decisões, ações, memória, atenção, etc. Sendo assim, existe grande interesse em simulá-las em ambientes computacionais, possibilitando que situações do cotidiano humano possam ser estudadas em ambientes controlados. Embora existam modelos teóricos para o funcionamento de emoções, estes por si só são insuficientes para uma simulação precisa em meios computacionais. Tendo como base um destes modelos, o modelo OCC, essa dissertação propõe a simulação de emoções em ambientes mutiagentes através da criação de uma rede Bayesiana capaz de traduzir estímulos gerados neste ambiente em emoções. A utilização de redes Bayesianas combinadas à estrutura do modelo OCC busca a adição de imprevisibilidade ao modelo, além de fornecê-lo uma estrutura computacional. A aplicação do modelo proposto a um sistema multiagentes proporciona o estudo da influência das emoções sobre as ações e comportamento dos agentes, possibilitando um estudo de comparação entre os resultados obtidos ao se realizar uma simulação multiagentes clássica e uma simulação multiagentes contendo emoções. De forma a validar e avaliar seu funcionamento, é apresentado o estudo da aplicação da rede Bayesiana de emoções sobre um modelo multiagentes exemplo, observando as variações que as emoções provocam sobre o comportamento dos agentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent advent of new technologies has led to huge amounts of genomic data. With these data come new opportunities to understand biological cellular processes underlying hidden regulation mechanisms and to identify disease related biomarkers for informative diagnostics. However, extracting biological insights from the immense amounts of genomic data is a challenging task. Therefore, effective and efficient computational techniques are needed to analyze and interpret genomic data. In this thesis, novel computational methods are proposed to address such challenges: a Bayesian mixture model, an extended Bayesian mixture model, and an Eigen-brain approach. The Bayesian mixture framework involves integration of the Bayesian network and the Gaussian mixture model. Based on the proposed framework and its conjunction with K-means clustering and principal component analysis (PCA), biological insights are derived such as context specific/dependent relationships and nested structures within microarray where biological replicates are encapsulated. The Bayesian mixture framework is then extended to explore posterior distributions of network space by incorporating a Markov chain Monte Carlo (MCMC) model. The extended Bayesian mixture model summarizes the sampled network structures by extracting biologically meaningful features. Finally, an Eigen-brain approach is proposed to analyze in situ hybridization data for the identification of the cell-type specific genes, which can be useful for informative blood diagnostics. Computational results with region-based clustering reveals the critical evidence for the consistency with brain anatomical structure.