955 resultados para Batch reactor
Resumo:
The identification of transport parameters by inverse modeling often suffers from equifinality or parameter correlation when models are fitted to observations of the solute breakthrough in column outflow experiments. This parameters uncertainty can be approached by the application of multiple experimental designs such as column experiments in open-flow mode and the recently proposed closed-flow mode. Latter are characterized by the recirculation of the column effluent into the solution supply vessel that feeds the inflow. Depending on the experimental conditions, the solute concentration in the solution supply vessel and the effluent follows a damped sinusoidal oscillation. As a result, the closed-flow experiment provides additional observables in the breakthrough curve. The evaluation of these emergent features allows intrinsic control over boundary conditions and impacts the uncertainty of parameters in inverse modeling. We present a comprehensive sensitivity analysis to illustrate the potential application of closed-flow experiments. We show that the sensitivity with respect to the apparent dispersion can be controlled by the experimenter leading to a decrease in parameter uncertainty as compared to classical experiments by an order of magnitude for optimal settings. With these finding we are also able to reduce the equifinality found for situations, where rate-limited interactions impede a proper determination of the apparent dispersion and rate coefficients. Furthermore, we show the expected breakthrough curve for equilibrium and kinetic sorption, the latter showing strong similarities to the behavior found for completely mixed batch reactor experiments. This renders the closed-flow mode a useful complementary approach to classical column experiments.
Resumo:
The biorefinery concept has attracted much attention over the last decade due to increasing concerns about the use of fossil resources. In this context emerged the use of bioplastics, namely polyhydroxyalkanoates (PHA). PHA are biocompatible and biodegradable plastics that can be obtained from renewable raw materials and can constitute an alternative solution to conventional plastics. In this work, hydrolysed cellulose pulp, coming from Eucalyptus globulus wood cooking, was used as substrate to the PHA-storing bacteria Haloferax mediterranei. The hydrolysed pulp is rich in simple sugars, mainly glucose (81.96 g.L-1) and xylose (20.90 g.L-1). Tests were made in defined medium with glucose and xylose and in hydrolysate supplemented with salts and yeast extract. Different concentrations of glucose were tested, namely 10, 15, 20, 30 and 40 g.L-1. The best accumulation results (27.1 % of PHA) were obtained in hydrolysate medium with 10 g.L-1. Using this concentration, assays were performed in fed-batch and sequencing batch reactor conditions in order to determine the best feeding strategy. The strategy that led to the best results was fed-batch assay with 24.7 % of PHA. An assay without sterile conditions was performed, in which was obtained the same growth than in sterilization test. Finally it was performed an assay in a bioreactor and a fast growth (0.14 h-1) with high glucose and xylose consumption rates (0.368 g.L-1.h-1 and 0.0947 g.L-1.h-1, respectively) were obtained. However 1.50 g.L-1 of PHA, corresponding to 16.1 % (92.52 % of 3HB and 3HV of 7.48 %) of % PHA were observed. The polymer was further characterized by DSC with a glass transition temperature of -6.07 °C, a melting temperature of 156.3 °C and a melting enthalpy of 63.07 J.g-1, values that are in accordance with the literature. This work recognizes for the first time the suitability of the pulp paper hydrolysate as a substrate for PHA production by H. mediterranei.
Resumo:
Este estudo tem como objetivo a valorização económica de resíduos agroindustriais, nomeadamente resíduos de kiwi, por digestão anaeróbia de forma a otimizar a produção de biogás e a sua qualidade (% CH4). Trata-se de uma pesquisa experimental que consistiu na avaliação da produção de biogás usando diferentes proporções de substrato e inóculo, quatro valores distintos para a razão C:N, inóculo de diferentes digestores e colheita do inóculo em épocas distintas do ano. Os ensaios foram desenvolvidos num reator batch em condições mesofílicas, sendo o processo acompanhado por monitorização dos parâmetros: pH, Alcalinidade, Ácidos Gordos Voláteis (AGV), Sólidos Totais (ST), Sólidos Voláteis (SV), Carência Química de Oxigénio (CQO) e Carbono. Para a totalidade dos ensaios, o valor de pH no reator praticamente não apresentou variação, mantendo-se em torno de 7,0; a alcalinidade do meio, 1500 mg CaCO3/L, revelou-se adequada uma vez que no final do processo de DA a concentração de AGV (400-600 mg/L), nunca excede os valores considerados críticos. Os resultados obtidos apresentam valores interessantes para um número considerável de ensaios. Das 10 experiências realizadas, em duas foram obtidos resultados muito significativos em relação à literatura; o ensaio com 1% de substrato (experiência 2) registou uma produção de biogás de 1628 L/kg SV com uma %CH4 de 57% e o biogás de maior qualidade, 85% de metano, foi obtido no ensaio com 5% de resíduo de kiwi (experiência 10). As experiências em que se avaliou o efeito da razão C:N foram as menos produtivas, possivelmente devido à inibição da atividade da população microbiana pelo KNO3. A qualidade do inóculo revelou-se determinante num conjunto de ensaios, nomeadamente quando a sua colheita foi realizada no inverno, com o digestor a apresentar temperaturas bastante baixas. De acordo com os valores mais favoráveis para a produção de biogás, por tonelada de resíduo de kiwi poderá ser obtido um valor monetário bruto de 102 €, resolvendo-se um problema de eliminação deste resíduo, com valorização energética simultaneamente.
Resumo:
Anaerobic digestion (AD) of wastewater is a very interesting option for waste valorization, energy production and environment protection. It is a complex, naturally occurring process that can take place inside bioreactors. The capability of predicting the operation of such bioreactors is important to optimize the design and the operation conditions of the reactors, which, in part, justifies the numerous AD models presently available. The existing AD models are not universal, have to be inferred from prior knowledge and rely on existing experimental data. Among the tasks involved in the process of developing a dynamical model for AD, the estimation of parameters is one of the most challenging. This paper presents the identifiability analysis of a nonlinear dynamical model for a batch reactor. Particular attention is given to the structural identifiability of the model, which considers the uniqueness of the estimated parameters. To perform this analysis, the GenSSI toolbox was used. The estimation of the model parameters is achieved with genetic algorithms (GA) which have already been used in the context of AD modelling, although not commonly. The paper discusses its advantages and disadvantages.
Resumo:
Presso lo stabilimento DOW di Correggio (che è una system house per la produzione di prepolimeri poliuretanici) la ricerca è attualmente incentrata sullo sviluppo su scala industriale di un reattore pilota continuo di tipo plug flow che andrà a sostituire i tradizionali processi BATCH, con un guadagno in termini di sicurezza e costi di investimento. In particolare, il progetto prevedeva di sperimentare le “ricette” attuali di prepolimeri per applicazioni nel settore della calzatura per valutarne l’equivalenza con quelli fatti in BATCH, e di calibrare un modello del reattore pilota che permetta di prevedere le prestazioni del reattore e supporti lo scale-up attraverso la raccolta di dati sperimentali (profili di temperatura, tempi di residenza, titolo di NCO del prodotto, ecc...). Alla conclusione del progetto è possibile affermare che la tecnologia è robusta, scalabile e rispetto ai sistemi di produzione attuale presenta una maggiore produttività, sicurezza e minori costi di investimento. At the DOW plant in Correggio, which is a system house for the production of polyurethane prepolymers, the research is currently focused on the develompment and application of a plug flow type continuos reactor that will replace the traditional BATCH processes, with advantages in terms of process safety an investment costs. In particular, the project aims were to test in the pilot plant the prepolymer receipts for footwear application, find out if the result products were similar or better than the ones made with BATCH reactor and harvest experimental data (such as temperatures profiles, reaction time, residual NCO value, etc...) in order to calibrate a model that will support the scale-up to the industrial plant. Now that the project is ended, it is possibile to assert that this tecnology is reliable, scalable, safer and cheaper than the old processes.
Resumo:
This work is focused on studying the kinetics of esterification of levulinic acid in an isothermal batch reactor using ethanol as a reactant and as a protic polar solvent at the same time and in the presence of an acid catalyst (sulfuric acid). The choice of solvent is important as it affects the kinetics and thermodynamics of the reaction system moreover, the knowledge of the reaction kinetics plays an important role in the design of the process. This work is divided into two stages; The first stage is the experimental part in which the experimental matrix was developed by changing the process variables one at a time (temperature, molar ratio between reactants, and catalyst concentration) in order to study their influence on the kinetics; the second stage is using the obtained data from the experiments to build the modeling part in order to estimate the thermodynamics parameters.
Resumo:
This paper describes the performance and biofilm characteristics of a full-scale anaerobic sequencing batch biofilm reactor (ASBBR; 20 m(3)) containing biomass immobilized on an inert support (mineral coal) for the treatment of industrial wastewater containing a high sulfate concentration. The ASBBR reactor was operated during 110 cycles (48 h each) at sulfate loading rates ranging from 6.9 to 62.4 kgSO(4)(2-)/cycle corresponding to sulfate concentrations of 0.58-5.2 gSO(4)(2-)/L. Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. After 71 cycles the mean sulfate removal efficiency was 99%, demonstrating a high potential for biological sulfate reduction. The biofilm formed in the reactor occurred in two different patterns, one at the beginning of the colonization and the other of a mature biofilm. These different colonization patterns are due to the low adhesion of the microorganisms on the inert support in the start-up period. The biofilm population is mainly made up of syntrophic consortia among sulfate-reducing bacteria and methanogenic archaea such as Methanosaeta spp.
Resumo:
Ammonium nitrogen removal from a synthetic wastewater by nitrification and denitrification processes were performed in a sequencing batch biofilm reactor containing immobilized biomass on polyurethane foam with circulation of the liquid-phase. It was analyzed the effect of four external carbon sources (ethanol, acetate, carbon synthetic medium and methanol) acting as electron donors in the denitrifying process. The experiments were conducted with intermittent aeration and operated at 30+/-1 degrees C in 8-h cycles. The synthetic wastewater (100 mgCOD/L and 50 mgNH(4)(+)-N/L) was added batch-wise, while the external carbon sources were added fed-batch-wise during the periods where aeration was suspended. Ammonium nitrogen removal efficiencies obtained were 95.7, 94.3 and 97.5% for ethanol, acetate and carbon synthetic medium, respectively. As to nitrite, nitrate and ammonium nitrogen effluent concentrations, the results obtained were, respectively: 0.1, 5.7 and 1.4 mg/L for ethanol; 0.2, 4.1 and 1.8 mg/L for acetate and 0.2, 6.7 and 0.8 for carbon synthetic medium. On the other hand using methanol, even at low concentrations (50% of the stoichiometric value calculated for complete denitrification), resulted in increasing accumulation of nitrate and ammonium nitrogen in the effluent over time.
Resumo:
This paper presents the results from 92 cycles of an anaerobic sequencing batch biofilm reactor containing biomass immobilized on inert support (mineral coal) applied for the treatment of an industrial wastewater containing high sulfate concentration. The pilot-scale reactor, with a total volume of 1.2 m(3), was operated at sulfate loading rates ranging from 0.15 to 1.90 kgSO(4)(2-)/cycle (48 It - cycle) corresponding to sulfate concentrations of 0.25 to 3.0 gSO(4)(2-) l(-1). Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. Influent sulfate concentrations were increased in order to evaluate the minimum COD/sulfate ratio at which high reactor performance could be maintained. The mean sulfate removal efficiency remained between the range of 88 to 92% at several sulfate concentrations. Temporal profiles along the 48 h cycles were carried out under stable operation at sulfate concentrations of 1.0, 2.0 and 3.0 gSO(4)(2-) l(-1). Sulfate removal reached 99% for cycle times of 15, 25, and 30 h, and the effluents sulfate concentrations were lower than 8 mgSO(4)(2-) l(-1). The results demonstrate the potential applicability of the anaerobic configuration for the biological treatment of sulfate-rich wastewaters. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective of this research was to study the behavior of two anaerobic sequencing batch reactors, containing immobilized biomass (AnSBBR), as a function of the ratio of the volume of treated medium in each cycle to the total volume of reaction medium. The reactors, in which mixing was accomplished by recirculation of the liquid phase, were maintained at 30 +/- 1 degrees C and treated different wastewaters in 8-h cycles. The operational conditions imposed had the objective to investigate whether maintenance of a residual volume in the reactor would affect, at the end of each cycle, process efficiency and stability, as well as to verify the intensity of the effect for different types of wastewaters and organic loading rates. The first reactor, with work volume of 2.5 L, treated reconstituted cheese whey at an organic loading rate of 12 g COD.L(-1).d(-1) and presented similar effluent quality for the four conditions under which it was operated: renewal of 100, 70, 50 and 25 % of its work volume at each cycle. Despite the fact that reduction in the renewed volume did not significantly affect effluent quality, in quantitative terms, this reduction resulted in an increase in the amount of organic matter removed by the first reactor. The second reactor, with work volume of 1.8 L, treated synthetic wastewater at organic loading rates of 3 and 5 g COD.L(-1).d(-1) and operated under two conditions for each loading: renewal of 100 and 50 % of its work volume. At the organic loading rate of 3 g COD.L(-1).d(-1), the results showed that both effluent quality and amount of organic matter removed by the second reactor were independent of the treated volume per cycle. At the organic loading rate of 5 g COD.L(-1).d(-1), although the reduction in the renewed volume did not affect the amount of organic matter removed by the reactor, effluent quality improved during reactor operation with total discharge of its volume. In general, results showed process stability under all conditions, evidencing reactor flexibility and the potential to apply this technology in the treatment of different types of wastewater.
Resumo:
The objective of this study was to determine the best performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) based on the use of four different bed materials as support for biomass immobilization. The bed materials utilized were Polyurethane foam (PU), vegetal carbon (VC), synthetic pumice (SP), and recycled low-density polyethylene (PE). The AnSBBR. with I total volume Of 7.2 L, was operated in 8-h batch cycles over 10 months, and fed with domestic sewage with an average influent chemical oxygen demand (COD) of 358 +/- 110 mg/L. The average effluent COD values were 121 +/- 31, 208 +/- 54, 233 +/- 52, and 227 +/- 51 mg/L. for PU, VC, SP, and PE, respectively. A modified first-order kinetic model was adjusted to temporal profiles of COD during a batch cycle, and the apparent kinetic constants were 0.52 +/- 0.05, 0.37 +/- 0.05, 0.80 +/- 0.04, and 0.30 +/- 0.021h(-1) for PU, VC, SP, and PE, respectively. Specific substrate utilization rates of 1.08, 0.11, and 0.86 mg COD/mg VS day were obtained for PU, VC, and PE, respectively. Although SP yielded the highest kinetic coefficient, PU was considered the best support, since SP presented loss of chemical constituents during the reactor`s operational phase. In addition, findings oil the microbial community were associated with the reactor`s performance data. Although PE did not show a satisfactory performance, an interesting microbial diversity was found oil its surface. Based oil the morphology and denaturing gradient gel electrophoresis (DGGE) results, PE showed the best capacity for promoting the attachment of methanogenic organisms, and is therefore a material that merits further analysis. PU was considered the Most suitable material showing the best performance in terms of efficiency of solids and COD removal. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a technological viability study of wastewater treatment in an automobile industry by an anaerobic sequencing batch biofilm reactor containing immobilized biomass (AnSBBR) with a draft tube. The reactor was operated in 8-h cycles, with agitation of 400 rpm, at 30 degrees C and treating 2.0 L wastewater per cycle. Initially the efficiency and stability of the reactor were studied when supplied with nutrients and alkalinity. Removal efficiency of 88% was obtained at volumetric loading rate (VLR) of 3.09 mg COD/L day. When VLR was increased to 6.19 mg COD/L day the system presented stable operation with reduction in efficiency of 71%. In a second stage the AnSBBR was operated treating wastewater in natura, i.e., without nutrients supplementation, only with alkalinity, thereby changing feed strategy. The first strategy consisted in feeding 2.0 L batch wise (10 min), the second in feeding 1.0 L of influent batch wise (10 min) and an additional 1.0 L fed-batch wise (4 h), both dewatering 2.0 L of the effluent in 10 min. The third one maintained 1.0 L of treated effluent in the reactor, without discharging, and 1.0 L of influent was fed fed-batch wise (4 h) with dewatering 1.0 L of the effluent in 10 min. For all implemented strategies (VLR of 1.40, 2.57 and 2.61 mg COD/L day) the system presented stability and removal efficiency of approximately 80%. These results show that the AnSBBR presents operational flexibility, as the influent can be fed according to industry availability. In industrial processes this is a considerable advantage, as the influent may be prone to variations. Moreover, for all the investigated conditions the kinetic parameters were obtained from fitting a first-order model to the profiles of organic matter, total volatile acids and methane concentrations. Analysis of the kinetic parameters showed that the best strategy is feeding 1.0 L of influent batchwise (10 min) and 1.0 L fed-batch wise (4 h) in 8-h cycle. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to estimate the first-order intrinsic kinetic constant (k(1)) and the liquid-phase mass transfer coefficient (k(c)) in a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) fed with glucose. A dynamic heterogeneous mathematical model, considering two phases (liquid and solid), was developed through mass balances in the liquid and solid phases. The model was adjusted to experimental data obtained from the ASBBR applied for the treatment of glucose-based synthetic wastewater with approximately 500 mg L-1 of glucose, operating in 8 h batch cycles, at 30 degrees C and 300 rpm. The values of the parameters obtained were 0.8911 min(-1) for k(1) and 0.7644 cm min(-1) for kc. The model was validated utilizing the estimated parameters with data obtained from the ASBBR operating in 3 h batch cycles, with a good representation of the experimental behavior. The solid-phase mass transfer flux was found to be the limiting step of the overall glucose conversion rate.
Resumo:
O reactor “Fed-batch” Proporcional utiliza o aumento de pressão que se verifica no interior do reactor, provocado pela acumulação do dióxido de carbono produzido no decurso da degradação aeróbia de um composto orgânico, para adicionar substrato ao reactor, sendo a alimentação proporcional à velocidade ou taxa de degradação de substrato. Nestas circunstâncias, e pretendendo-se avaliar da fiabilidade daquele tipo de reactor, era necessário verificar se a reacção biológica era perturbada pela acumulação de dióxido de carbono. Assim, o presente trabalho teve por objectivo estudar a influência do dióxido de carbono, dissolvido na solução de fermentação, no crescimento microbiano e no consumo de substrato, através da comparação do funcionamento, em paralelo, de dois reactores “fed-batch”, sendo um proporcional e outro aberto. Constatou-se que os valores das constantes cinéticas, taxa específica de consumo de substrato (qobs) e coeficiente de rendimento celular (Y(X/S)), determinados no reactor “Fed-batch” Proporcional e num reactor “Fed-batch” Aberto, operados em condições equivalentes, eram semelhantes. Os valores da taxa de crescimento específica (μobs) apresentam diferenças mais significativas, no entanto a maioria dos testes estatísticos não-paramétricos aplicados demonstraram que o conjunto de valores de cada reactor pertencem à mesma distribuição. A taxa de consumo de oxigénio (OUR), que reflecte a viabilidade da biomassa, é normalmente superior no reactor “Fed-batch” Aberto. Os resultados obtidos no presente estudo não evidenciaram efeitos inibidores, para a reacção biológica, provocados pelo dióxido de carbono dissolvido, ou pelos iões bicarbonato que se acumulam no reactor “Fed-batch” Proporcional.
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012