995 resultados para Basis path testing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turtle excluder devices (TEDs) are being trialed on a voluntary basis in many Australian prawn (shrimp) trawl fisheries to reduce sea turtle captures. Analysis of TED introductions into shrimp trawl fisheries of the United States provided major insights into why conflicts occurred between shrimpers, conservationists, and government agencies. A conflict over the introduction and subsequent regulation of TEDs occurred because the problem and the solution were perceived differently by the various stakeholders. Attempts to negotiate and mediate the conflict broke down, resulting in litigation against the U.S. government by conservationists and shrimpers. Litigation was not an efficient resolution to the sea turtle-TED-trawl conflict but it appears that litigation was the only remaining path of resolution once the issue became polarized. We review two major Australian trawl fisheries to identify any significant differences in circumstances that may affect TED acceptance. Australian trawl fisheries are structured differently and good communication occurs between industry and researchers. TEDs are being introduced as mature technology. Furthermore, bycatch issues are of increasing concern to all stakeholders. These factors, combined with insights derived from previous conflicts concerning TEDs in the United Stares, increase the possibilities that TEDs will be introduced to Australian fishers with better acceptance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the second in a series of articles whose ultimate goal is the evaluation of the matrix elements (MEs) of the U(2n) generators in a multishell spin-orbit basis. This extends the existing unitary group approach to spin-dependent configuration interaction (CI) and many-body perturbation theory calculations on molecules to systems where there is a natural partitioning of the electronic orbital space. As a necessary preliminary to obtaining the U(2n) generator MEs in a multishell spin-orbit basis, we must obtain a complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The zero-shift coefficients were obtained in the first article of the series. in this article, we evaluate the nonzero shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. We then demonstrate that the one-shell versions of these coefficients may be obtained by taking the Gelfand-Tsetlin limit of the two-shell formulas. These coefficients,together with the zero-shift types, then enable us to write down formulas for the U(2n) generator matrix elements in a two-shell spin-orbit basis. Ultimately, the results of the series may be used to determine the many-electron density matrices for a partitioned system. (C) 1998 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the third and final article in a series directed toward the evaluation of the U(2n) generator matrix elements (MEs) in a multishell spin/orbit basis. Such a basis is required for many-electron systems possessing a partitioned orbital space and where spin-dependence is important. The approach taken is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. A complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis (which is appropriate to the many-electron problem) were obtained in the first and second articles of this series. Ln the first article we defined zero-shift coupling coefficients. These are proportional to the corresponding two-shell del-operator matrix elements. See P. J. Burton and and M. D. Gould, J. Chem. Phys., 104, 5112 (1996), for a discussion of the del-operator and its properties. Ln the second article of the series, the nonzero shift coupling coefficients were derived. Having obtained all the necessary coefficients, we now apply the formalism developed above to obtain the U(2n) generator MEs in a multishell spin-orbit basis. The methods used are based on the work of Gould et al. (see the above reference). (C) 1998 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To simulate cropping systems, crop models must not only give reliable predictions of yield across a wide range of environmental conditions, they must also quantify water and nutrient use well, so that the status of the soil at maturity is a good representation of the starting conditions for the next cropping sequence. To assess the suitability for this task a range of crop models, currently used in Australia, were tested. The models differed in their design objectives, complexity and structure and were (i) tested on diverse, independent data sets from a wide range of environments and (ii) model components were further evaluated with one detailed data set from a semi-arid environment. All models were coded into the cropping systems shell APSIM, which provides a common soil water and nitrogen balance. Crop development was input, thus differences between simulations were caused entirely by difference in simulating crop growth. Under nitrogen non-limiting conditions between 73 and 85% of the observed kernel yield variation across environments was explained by the models. This ranged from 51 to 77% under varying nitrogen supply. Water and nitrogen effects on leaf area index were predicted poorly by all models resulting in erroneous predictions of dry matter accumulation and water use. When measured light interception was used as input, most models improved in their prediction of dry matter and yield. This test highlighted a range of compensating errors in all modelling approaches. Time course and final amount of water extraction was simulated well by two models, while others left up to 25% of potentially available soil water in the profile. Kernel nitrogen percentage was predicted poorly by all models due to its sensitivity to small dry matter changes. Yield and dry matter could be estimated adequately for a range of environmental conditions using the general concepts of radiation use efficiency and transpiration efficiency. However, leaf area and kernel nitrogen dynamics need to be improved to achieve better estimates of water and nitrogen use if such models are to be use to evaluate cropping systems. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over half a million heroin misusers receive oral methadone maintenance treatment world-wide1 but the maintenance prescription of injectable opioid drugs, like heroin, remains controversial. In 1992 Switzerland began a large scale evaluation of heroin and other injectable opiate prescribing that eventually involved 1035 misusers. 2 3 The results of the evaluation have recently been reported.4 These show that it was feasible to provide heroin by intravenous injection at a clinic, up to three times a day, for seven days a week. This was done while maintaining good drug control, good order, client safety, and staff morale. Patients were stabilised on 500 to 600 mg heroin daily without evidence of increasing tolerance. Retention in treatment was 89% at six months and 69% at 18 months.4 The self reported use of non-prescribed heroin fell signifianctly, but other drug use was minimally affected. The death rate was 1% per year, and there were no deaths from overdose among participants . . . [Full text of this article]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instantaneous outbursts in underground coal mines have occurred in at least 16 countries, involving both methane (CH4) and carbon dioxide (CO2). The precise mechanisms of an instantaneous outburst are still unresolved but must consider the effects of stress, gas content and physico-mechanical properties of the coal. Other factors such as mining methods (e.g., development heading into the coal seam) and geological features (e.g., coal seam disruptions from faulting) can combine to exacerbate the problem. Prediction techniques continue to be unreliable and unexpected outburst incidents resulting in fatalities are a major concern for underground coal operations. Gas content thresholds of 9 m(3)/t for CH4 and 6 m(3)/t for CO2 are used in the Sydney Basin, to indicate outburst-prone conditions, but are reviewed on an individual mine basis and in mixed as situations. Data on the sorption behaviour of Bowen Basin coals from Australia have provided an explanation for the conflicting results obtained by coal face desorption indices used for outburst-proneness assessment. A key factor appears to be different desorption rates displayed by banded coals, which is supported by both laboratory and mine-site investigations. Dull coal bands with high fusinite and semifusinite contents tend to display rapid desorption from solid coal, for a given pressure drop. The opposite is true for bright coal bands with high vitrinite contents and dull coal bands with high inertodetrinite contents. Consequently, when face samples of dull, fusinite-or semifusinite-rich coal of small particle size are taken for desorption testing, much gas has already escaped and low readings result. The converse applies for samples taken from coal bands with high vitrinite and/or inertodetrinite contents. In terms of outburst potential, it is the bright, vitrinite-rich and the dull, inertodetrinite-rich sections of a coal seam that appear to be more outburst-prone. This is due to the ability of the solid coal to retain gas, even after pressure reduction, creating a gas content gradient across the coal face sufficient to initiate an outburst. Once the particle size of the coal is reduced, rapid gas desorption can then take place. (C) 1998 Elsevier Science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extended gcd calculation has a long history and plays an important role in computational number theory and linear algebra. Recent results have shown that finding optimal multipliers in extended gcd calculations is difficult. We present an algorithm which uses lattice basis reduction to produce small integer multipliers x(1), ..., x(m) for the equation s = gcd (s(1), ..., s(m)) = x(1)s(1) + ... + x(m)s(m), where s1, ... , s(m) are given integers. The method generalises to produce small unimodular transformation matrices for computing the Hermite normal form of an integer matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an alpha-beta sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This field study was a combined chemical and biological investigation of the relative effects of using dispersants to treat oil spills impacting mangrove habitats. The aim of the chemistry was to determine whether dispersant affected the short- or long-term composition of a medium range crude oil (Gippsland) stranded in a tropical mangrove environment in Queensland, Australia. Sediment cores from three replicate plots of each treatment (oil only and oil plus dispersant) were analyzed for total hydrocarbons and for individual molecular markers (alkanes, aromatics, triterpanes, and steranes). Sediments were collected at 2 days, then 1, 7, 13 and 22 months post-spill. Over this time, oil in the six treated plots decreased exponentially from 36.6 +/- 16.5 to 1.2 +/- 0.8 mg/g dry wt. There was no statistical difference in initial oil concentrations, penetration of oil to depth, or in the rates of oil dissipation between oiled or dispersed oil plots. At 13 months, alkanes were >50% degraded, aromatics were similar to 30% degraded based upon ratios of labile to resistant markers. However, there was no change in the triterpane or sterane biomarker signatures of the retained oil. This is of general forensic interest for pollution events. The predominant removal processes were evaporation (less than or equal to 27%) and dissolution (greater than or equal to 56%), with a lag-phase of 1 month before the start of significant microbial degradation (less than or equal to 7%). The most resistant fraction of the oil that remained after 7 months (the higher molecular weight hydrocarbons) correlated with the initial total organic carbon content of the soil. Removal rate in the Queensland mangroves was significantly faster than that observed in the Caribbean and was related to tidal flushing. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of large-scale solid-stale fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation. (C) 2000 John Wiley & Sons, Inc.