553 resultados para Barbas linker
Resumo:
The nucleoid-associated protein H-NS is a global modulator of the expression of genes associated with adaptation to environmental changes. A variant of H-NS expressed in the R27 plasmid was previously shown to selectively modulate the expression of horizontally acquired genes, with minimal effects on core genes that are repressed by the chromosomal form of H-NS. Both H-NS proteins are formed by an oligomerization domain and a DNA-binding domain, which are connected by a linker that is highly flexible in the absence of DNA. We studied DNA binding by means of oligomer-forming chimeric proteins in which domains of the chromosomal and plasmidic variants are exchanged, as well as in monomeric truncated forms containing the DNA-binding domain and variable portions of the linker. Point mutations in the linker were also examined in full-length and truncated H-NS constructs. These experiments show that the linker region contributes to DNA binding affinity and that it is a main component of the distinct DNA binding properties of chromosomal and plasmidic H-NS. We propose that interactions between the linker and DNA limit the flexibility of the connection between H- NS oligomerization and DNA binding and provide an allosteric indirect readout mechanism to detect long- range distortions of DNA, thus enabling discrimination between core and horizontally acquired DNA.
Resumo:
We have designed and validated a novel generic platform for production of tetravalent IgG1-like chimeric bispecific Abs. The VH-CH1-hinge domains of mAb2 are fused through a peptidic linker to the N terminus of mAb1 H chain, and paired mutations at the CH1-CL interface mAb1 are introduced that force the correct pairing of the two different free L chains. Two different sets of these CH1-CL interface mutations, called CR3 and MUT4, were designed and tested, and prototypic bispecific Abs directed against CD5 and HLA-DR were produced (CD5xDR). Two different hinge sequences between mAb1 and mAb2 were also tested in the CD5xDR-CR3 or -MUT4 background, leading to bispecific Ab (BsAbs) with a more rigid or flexible structure. All four Abs produced bound with good specificity and affinity to CD5 and HLA-DR present either on the same target or on different cells. Indeed, the BsAbs were able to efficiently redirect killing of HLA-DR(+) leukemic cells by human CD5(+) cytokine-induced killer T cells. Finally, all BsAbs had a functional Fc, as shown by their capacity to activate human complement and NK cells and to mediate phagocytosis. CD5xDR-CR3 was chosen as the best format because it had overall the highest functional activity and was very stable in vitro in both neutral buffer and in serum. In vivo, CD5xDR-CR3 was shown to have significant therapeutic activity in a xenograft model of human leukemia.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.
Resumo:
The composite membranes prepared via incorporation of 12.5% of molecular sieves 3A, 4A, 5A and 13X into chitosan/poly(vinyl alcohol) (1:1). The composite membranes were immersed in the cross-linker sulfuric acid in order to acquire high proton conductivity for applications in electrolytes in PEMCF and DMF. The influence of the molecular sieves on the structural, optical, thermal, mechanical, morphologic and protonic conductivity properties and water/methanol swelling degree of membranes were investigated.
Resumo:
Metal-organic frameworks (MOFs) form a new class of materials with well-defined yet tunable properties. These are crystalline, highly porous and exhibit strong metal-ligand interactions. Importantly, their physical and chemical properties, including pore size, pore structure, acidity, and magnetic and optical characteristics, can be tailored by choosing the appropriate ligands and metal precursors. Here we review the key aspects of synthesis and characterization of MOFs, focusing on lanthanide-based and vanadium-based materials. We also outline some of their applications in catalysis and materials science.
Resumo:
Através de estudo experimental, verificou-se que, embora o quadro clínico-patológico seja essencialmente o mesmo, o búfalo é pelo menos duas vezes mais resistente que o bovino à ação tóxica de Arrabidaea bilabiata (Sprague) Sandw. Os experimentos demonstraram também, que as folhas novas desta planta são duas vezes (em outubro, fim da época de seca) ou uma vez e meio (em maio, fim da época de chuva) mais tóxicas do que as folhas maduras, e que a planta é mais tóxica em outubro. Esses dados indicam que a menor incidência de intoxicação por plantas do grupo das que causam morte súbita, em búfalos na Amazônia, deva-se, em parte, à maior resistência dessa espécie animal. Também parece importante a coincidência do habitat preferencial dos búfalos (várzea) com o habitat de A. bilabiata, planta menos tóxica que Palicourea marcgravii St.Hil., encontrada em terra firme que é o habitat preferido pelos bovinos.
Resumo:
We prospectively evaluated the effects of positive end-expiratory pressure (PEEP) on the respiratory mechanical properties and hemodynamics of 10 postoperative adult cardiac patients undergoing mechanical ventilation while still anesthetized and paralyzed. The respiratory mechanics was evaluated by the inflation inspiratory occlusion method and hemodynamics by conventional methods. Each patient was randomized to a different level of PEEP (5, 10 and 15 cmH2O), while zero end-expiratory pressure (ZEEP) was established as control. PEEP of 15-min duration was applied at 20-min intervals. The frequency dependence of resistance and the viscoelastic properties and elastance of the respiratory system were evaluated together with hemodynamic and respiratory indexes. We observed a significant decrease in total airway resistance (13.12 ± 0.79 cmH2O l-1 s-1 at ZEEP, 11.94 ± 0.55 cmH2O l-1 s-1 (P<0.0197) at 5 cmH2O of PEEP, 11.42 ± 0.71 cmH2O l-1 s-1 (P<0.0255) at 10 cmH2O of PEEP, and 10.32 ± 0.57 cmH2O l-1 s-1 (P<0.0002) at 15 cmH2O of PEEP). The elastance (Ers; cmH2O/l) was not significantly modified by PEEP from zero (23.49 ± 1.21) to 5 cmH2O (21.89 ± 0.70). However, a significant decrease (P<0.0003) at 10 cmH2O PEEP (18.86 ± 1.13), as well as (P<0.0001) at 15 cmH2O (18.41 ± 0.82) was observed after PEEP application. Volume dependence of viscoelastic properties showed a slight but not significant tendency to increase with PEEP. The significant decreases in cardiac index (l min-1 m-2) due to PEEP increments (3.90 ± 0.22 at ZEEP, 3.43 ± 0.17 (P<0.0260) at 5 cmH2O of PEEP, 3.31 ± 0.22 (P<0.0260) at 10 cmH2O of PEEP, and 3.10 ± 0.22 (P<0.0113) at 15 cmH2O of PEEP) were compensated for by an increase in arterial oxygen content owing to shunt fraction reduction (%) from 22.26 ± 2.28 at ZEEP to 11.66 ± 1.24 at PEEP of 15 cmH2O (P<0.0007). We conclude that increments in PEEP resulted in a reduction of both airway resistance and respiratory elastance. These results could reflect improvement in respiratory mechanics. However, due to possible hemodynamic instability, PEEP should be carefully applied to postoperative cardiac patients.
Resumo:
Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ54 co-factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH4Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.
Resumo:
Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex)1.3(DOX)20. In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers.
Resumo:
Most drugs function by binding reversibly to specific biological targets, and therapeutic effects generally require saturation of these targets. One means of decreasing required drug concentrations is incorporation of reactive metal centers that elicit irreversible modification of targets. A common approach has been the design of artificial proteases/nucleases containing metal centers capable of hydrolyzing targeted proteins or nucleic acids. However, these hydrolytic catalysts typically provide relatively low rate constants for target inactivation. Recently, various catalysts were synthesized that use oxidative mechanisms to selectively cleave/inactivate therapeutic targets, including HIV RRE RNA or angiotensin converting enzyme (ACE). These oxidative mechanisms, which typically involve reactive oxygen species (ROS), provide access to comparatively high rate constants for target inactivation. Target-binding affinity, co-reactant selectivity, reduction potential, coordination unsaturation, ROS products (metal-associated vsmetal-dissociated; hydroxyl vs superoxide), and multiple-turnover redox chemistry were studied for each catalyst, and these parameters were related to the efficiency, selectivity, and mechanism(s) of inactivation/cleavage of the corresponding target for each catalyst. Important factors for future oxidative catalyst development are 1) positioning of catalyst reduction potential and redox reactivity to match the physiological environment of use, 2) maintenance of catalyst stability by use of chelates with either high denticity or other means of stabilization, such as the square planar geometric stabilization of Ni- and Cu-ATCUN complexes, 3) optimal rate of inactivation of targets relative to the rate of generation of diffusible ROS, 4) targeting and linker domains that afford better control of catalyst orientation, and 5) general bio-availability and drug delivery requirements.
Resumo:
Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis.
Resumo:
Phycobilisomes are the major light harvesting complexes for cyanobacteria and phycocyanin is the primary phycobiliprotein of the phycobilisome rod. The phycocyanobilin lyases responsible for chromophorylating the phycocyanin p subunit (CpcB) have been recently identified in the cyanobacterium Synechococcus sp. PCC 7002. Surprisingly, mutants missing the CpcB lyases were nevertheless capable of producing pigmented phycocyanin. 10K absorbance measurements revealed that the energy states of the p phycocyanin chromophores were only subtly shifted; however, 77K steady state fluorescence emission spectroscopy showed excitation energy transfer involving the targeted chromophores to be highly disrupted. Such evidence suggests that phycobilin orientation within the binding domain is specifically modified. We hypothesized that alternate, less specific lyases are able to act on the p binding sites. A phycocyanin linker-polypeptide deficient mutant was similarly characterized. The light state transition, a short term adaptation of the photosynthetic light harvesting apparatus resulting in the redistribution of excitation energy among the photo systems, was shown to be dominated by the reallocation of phycocyanin-absorbed excitation energy. Treatment with a high M phosphate buffer effectively prevented the redistribution of both chlorophyll a- and phycobilisome- absorbed excitation energy, suggesting that the two effects are not strictly independent. The mutant strains required a larger redistribution of excitation energy between light states, perhaps to compensate for their loss in phycobilisome antenna function.