201 resultados para Bananas.
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Bananas (Musa spp.) are highly perishable fruit of notable economic and nutritional relevance. Because the identification of proteins involved in metabolic pathways could help to extend green-life and improve the quality of the fruit, this study aimed to compare the proteins of banana pulp at the pre-climacteric and climacteric stages. The use of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed 50 differentially expressed proteins, and comparing those proteins to the Mass Spectrometry Protein Sequence Database (MSDB) identified 26 known proteins. Chitinases were the most abundant types of proteins in unripe bananas, and two isoforms in the ripe fruit have been implicated in the stress/defense response. In this regard, three heat shock proteins and isoflavone reductase were also abundant at the climacteric stage. Concerning fruit quality, pectate lyase, malate dehydrogenase, and starch phosphorylase accumulated during ripening. In addition to the ethylene formation enzyme amino cyclo carboxylic acid oxidase, the accumulation of S-adenosyl-L-homocysteine hydrolase was needed because of the increased ethylene synthesis and DNA methylation that occurred in ripening bananas. Differential analysis provided information on the ripening-associated changes that occurred in proteins involved in banana flavor, texture, defense, synthesis of ethylene, regulation of expression, and protein folding, and this analysis validated previous data on the transcripts during ripening. In this regard, the differential proteomics of fruit pulp enlarged our understanding of the process of banana ripening. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
[EN] The identification and quantification of phenolic compounds in bananas from Gran Canaria were carried out to examine changes in their profile during maturation. The phenolic composition of extracts derived from bananas was determined by using HPLC. The total phenolic contents were measured with Folin–Cicolteau`s phenol reagent. To quantify the total antioxidant capacity of banana extracts, we chose two methods commonly used: the percentage of inhibition of radical 1,1–diphenyl-2-picrylhydrazyl (DPPH) and the ferric reducing antioxidant power (FRAP assay). The antioxidant potential on banana extracts was found to increase during maturation in correlation whit the total phenol content.
Resumo:
In a global and increasingly competitive fresh produce market, more attention is being given to fruit quality traits and consumer satisfaction. Kiwifruit occupies a niche position in the worldwide market, when compared to apples, oranges or bananas. It is a fruit with extraordinarily good nutritional traits, and its benefits to human health have been widely described. Until recently, international trade in kiwifruit was restricted to a single cultivar, but different types of kiwifruit are now becoming available in the market. Effective programmes of kiwifruit improvement start by considering the requirements of consumers, and recent surveys indicate that sweeter fruit with better flavour are generally preferred. There is a strong correlation between at-harvest dry matter and starch content, and soluble solid concentration and flavour when fruit are eating ripe. This suggests that carbon accumulation strongly influences the development of kiwifruit taste. The overall aim of the present study was to determine what factors affect carbon accumulation during Actinidia deliciosa berry development. One way of doing this is by comparing kiwifruit genotypes that differ greatly in their ability to accumulate dry matter in their fruit. Starch is the major component of dry matter content. It was hypothesized that genotypes were different in sink strength. Sink strength, by definition, is the effect of sink size and sink activity. Chapter 1 reviews fruit growth, kiwifruit growth and development and carbon metabolism. Chapter 2 describes the materials and methods used. Chapter 3, 4, 5 and 6 describes different types of experimental work. Chapter 7 contains the final discussions and the conclusions Three Actinidia deliciosa breeding populations were analysed in detail to confirm that observed differences in dry matter content were genetically determined. Fruit of the different genotypes differed in dry matter content mainly because of differences in starch concentrations and dry weight accumulation rates, irrespective of fruit size. More detailed experiments were therefore carried out on genotypes which varied most in fruit starch concentrations to determine why sink strengths were so different. The kiwifruit berry comprises three tissues which differ in dry matter content. It was initially hypothesised that observed differences in starch content could be due to a larger proportion of one or other of these tissues, for example, of the central core which is highest in dry matter content. The study results showed that this was not the case. Sink size, intended as cell number or cell size, was then investigated. The outer pericarp makes up about 60% of berry weight in ‘Hayward’ kiwifruit. The outer pericarp contains two types of parenchyma cells: large cells with low starch concentration, and small cells with high starch concentration. Large cell, small cell and total cell densities in the outer pericarp were shown to be not correlated with either dry matter content or fruit size but further investigation of volume proportion among cell types seemed justified. It was then shown that genotypes with fruit having higher dry matter contents also had a higher proportion of small cells. However, the higher proportion of small cell volume could only explain half of the observed differences in starch content. So, sink activity, intended as sucrose to starch metabolism, was investigated. In transiently starch storing sinks, such as tomato fruit and potato tubers, a pivotal role in carbon metabolism has been attributed to sucrose cleaving enzymes (mainly sucrose synthase and cell wall invertase) and to ADP-glucose pyrophosphorylase (the committed step in starch synthesis). Studies on tomato and potato genotypes differing in starch content or in final fruit soluble solid concentrations have demonstrated a strong link with either sucrose synthase or ADP-glucose pyrophosphorylase, at both enzyme activity and gene expression levels, depending on the case. Little is known about sucrose cleaving enzyme and ADP-glucose pyrophosphorylase isoforms. The HortResearch Actinidia EST database was then screened to identify sequences putatively encoding for sucrose synthase, invertase and ADP-glucose pyrophosphorylase isoforms and specific primers were designed. Sucrose synthase, invertase and ADP-glucose pyrophosphorylase isoform transcript levels were anlayzed throughout fruit development of a selection of four genotypes (two high dry matter and two low dry matter). High dry matter genotypes showed higher amounts of sucrose synthase transcripts (SUS1, SUS2 or both) and higher ADP-glucose pyrophosphorylase (AGPL4, large subunit 4) gene expression, mainly early in fruit development. SUS1- like gene expression has been linked with starch biosynthesis in several crop (tomato, potato and maize). An enhancement of its transcript level early in fruit development of high dry matter genotypes means that more activated glucose (UDP-glucose) is available for starch synthesis. This can be then correlated to the higher starch observed since soon after the onset of net starch accumulation. The higher expression level of AGPL4 observed in high dry matter genotypes suggests an involvement of this subunit in drive carbon flux into starch. Changes in both enzymes (SUSY and AGPse) are then responsible of higher starch concentrations. Low dry matter genotypes showed generally higher vacuolar invertase gene expression (and also enzyme activity), early in fruit development. This alternative cleavage strategy can possibly contribute to energy loss, in that invertases’ products are not adenylated, and further reactions and transport are needed to convert carbon into starch. Although these elements match well with observed differences in starch contents, other factors could be involved in carbon metabolism control. From the microarray experiment, in fact, several kinases and transcription factors have been found to be differentially expressed. Sink strength is known to be modified by application of regulators. In ‘Hayward’ kiwifruit, the synthetic cytokinin CPPU (N-(2-Chloro-4-Pyridyl)-N-Phenylurea) promotes a dramatic increase in fruit size, whereas dry matter content decreases. The behaviour of CPPU-treated ‘Hayward’ kiwifruit was similar to that of fruit from low dry matter genotypes: dry matter and starch concentrations were lower. However, the CPPU effect was strongly source limited, whereas in genotype variation it was not. Moreover, CPPU-treated fruit gene expression (at sucrose cleavage and AGPase levels) was similar to that in high dry matter genotypes. It was therefore concluded that CPPU promotes both sink size and sink activity, but at different “speeds” and this ends in the observed decrease in dry matter content and starch concentration. The lower “speed” in sink activity is probably due to a differential partitioning of activated glucose between starch storage and cell wall synthesis to sustain cell expansion. Starch is the main carbohydrate accumulated in growing Actinidia deliciosa fruit. Results obtained in the present study suggest that sucrose synthase and AGPase enzymes contribute to sucrose to starch conversion, and differences in their gene expression levels, mainly early in fruit development, strongly affect the rate at which starch is therefore accumulated. This results are interesting in that starch and Actinidia deliciosa fruit quality are tightly connected.
Resumo:
Today, crude oil remains a vital resource all around the world. This non-renewable resource powers countries worldwide. Besides serving as an energy source, crude oil is also the most important component for different world economies, especially in developing countries. Ecuador, a small member of the OPEC oil cartel, presents a case where its economy is oil dependent. A great percentage of the country¿s GDP and government¿s budget comes from oil revenues. Ecuador has always been a primary exporter of raw materials. In the last centuries, the country experienced three important economic booms: cacao, bananas, and, ultimately, crude oil. In this sense, the country has not been able to fully industrialize and begin to export manufactured goods, i.e., Ecuador suffers from the Dutch disease. The latter has deterred Ecuador from achieving broad-based economic development. Given crude oil¿s importance for the Ecuadorian economy, the government has always tried to influence the oil industry in search of profits and benefits. Therefore, this thesis, explores the question: how and to what extent have political interventions affected the oil industry in Ecuador from 1990 until March 2014? In general, this thesis establishes an economic history context during the last twenty-four years, attempting to research how political interventions have shaped Ecuador¿s oil industry and economy. In the analysis, it covers a period where political instability prevailed, until Rafael Correa became president. The thesis examines Ecuador¿s participation in OPEC, trying to find explanations as to why the country voluntarily left the organization in 1992, only to rejoin in 2007 when Correa rose to power. During the ¿Revolución Ciudadana¿ period, the thesis researches reforms to the Law of Hydrocarbons, variations in the relations with other nations, the controversy surrounding the YasunÃ-ITT oil block, and the ¿RefinerÃa del PacÃfico¿ construction. The thesis is an Industrial Organization detailed case study that analyzes, updates, and evaluates the intersection of economics and politics in Ecuador¿s crude oil industry during the last 24 years. In this sense I have consulted past theses, newspaper articles, books, and other published data about the petroleum industry, both from a global and Ecuadorian perspective. In addition to published sources, I was able to interview sociologists, public figures, history and economics academics, and other experts, accessing unique unpublished data about Ecuador¿s oil industry. I made an effort to collect information that shows the private and public side of the industry, i.e., from government-related and independent sources. I attempted to remain as objective as possible to make conclusions about the appropriate Industrial Organization policy for Ecuador¿s oil industry, addressing the issue from an economic, social, political, and environmental point of view. I found how Ecuador¿s political instability caused public policy to fail, molding the conduct and market structure of the crude oil industry. Throughout history, developed nations have benefited from low oil prices, but things shifted since oil prices began to rise, which is more beneficial for the developing nations that actually possess and produce the raw material. Nevertheless, Ecuador, a victim of the Dutch disease due to its heavy reliance on crude oil as a primary product, has not achieved broad-based development.
Resumo:
This the tenth in a series of symposia devoted to talks by students on their biochemical engineering research. The first, third, fifth, and ninth were at Kansas State University in Manhattan, the second and fourth were at the University of Nebraska–Lincoln, the sixth was in Kansas City in conjunction with the 81st American Institute of Chemical Engineers National Meeting, the seventh was at Iowa State University in Ames, and the eighth was held at the University of Missouri–Columbia. Contents"Combined Autohydrolysis-Organosolv Pretreatment of Lignocellulosic Materials," Robert A. Lewis, Colorado State University "An Investigation of Cellulase Activity Assays," Minhhuong Nguyen, University of Missouri–Columbia "Action Pattern of a Xylobiohydrolase from Aspergillus niger," Mary M. Frederick, Iowa State University "Estimation of Heats of Combustion of Biomass from Elemental Analysis Using Available Electron Concepts," Snehal A. Patel, Kansas State University "Design of a Wheat Straw to Ethanol Conversion Facility," Michael M. Meagher, Colorado State University "Effects of Salt, Heat, and Physical Form on the Fermentation of Bananas," Carl Drewel, University of Missouri–Columbia "Gas Hold-up in the Downflow Section of a Split Cylinder Airlift Column," Vasanti Deshpande, Kansas State University "Measurement of Michaelis Constants for Soluble and Immobilized Glucoamylase," Robert A. Lesch, Iowa State University "Kinetics of Alkaline Oxidation and Degradation of Sugars," Alfred R. Fratzke, Iowa State University "Stability of Cereal Protein During Microbial Growth on Grain Dust," Bamidele O. Solomon, Kansas State University
Resumo:
El banano en la provincia de Formosa (Argentina) es uno de los principales cultivos de renta y generador de mano de obra para el productor por lo que representa un importante lugar en lo social y económico. La sanidad de los cultivos es fundamental para lograr una mayor rentabilidad. Se han observado en los frutos daños atribuibles a trips. Los objetivos de este trabajo fueron identificar la/s especie/s de trips causal de las erupciones del fruto de banano en la provincia de Formosa, realizar una descripción detallada de su morfología y caracterizar y evaluar los daños producidos. La zona de trabajo correspondió al Área-Laguna Naineck en el Departamento Pilcomayo de la provincia de Formosa considerando un total de 1.103,74 ha pertenecientes a 233 productores. Para la determinación del estado sanitario de las plantaciones con respecto a la presencia del insecto se realizó un diseño de muestreo estadístico. Se recolectaron muestras del insecto y se identificaron con ayuda de claves. La única especie de trips encontrada fue Frankliniella brevicaulis. Los daños producidos por esta especie serían debidos a las heridas causadas por la oviposición, siendo éstas posibles fuentes de entrada para el hongo Colletotrichum musae. Se observaron daños en el 100% de los cachos de banana en todas las plantaciones evaluadas.
Resumo:
O objetivo deste trabalho foi avaliar o potencial de uso do resíduo da extração de pigmento de cúrcuma na produção de filmes e coberturas. Para o estudo dos filmes, foram utilizados glicerol e sorbitol como plastificantes e avaliados os efeitos da concentração de farinha de cúrcuma e do plastificante sobre as propriedades mecânicas, solubilidade, permeabilidade ao vapor de água (PVA), molhabilidade, atividade antioxidante, teor de curcuminóides e teor de compostos fenólicos totais utilizando um Delineamento Central Composto Rotacional 22, e os resultados foram avaliados utilizando a metodologia de superfície de resposta (MSR). A concentração de farinha afetou de forma positiva a espessura, PVA e o teor de curcuminóides totais dos filmes plastificados com glicerol e sorbitol. Entretanto, esta variável afetou as propriedades de solubilidade, molhabilidade e teor de compostos fenólicos totais somente dos filmes com glicerol. A concentração de plastificante (glicerol ou sorbitol) afetou significativamente a solubilidade, PVA e molhabilidade de ambos os filmes. Filmes de farinha de cúrcuma com boas propriedades mecânicas, baixa permeabilidade ao vapor de água, alta atividade antioxidante, alto teor de curcuminóides e alto teor de compostos fenólicos totais podem ser produzidos utilizando 27,9 a 30 g glicerol/100 g farinha ou 30 a 42 g sorbitol/100 g farinha e concentração de farinha na faixa de 5% a 6,41%. A cobertura de farinha de cúrcuma contendo 6% de farinha e 30 g glicerol/100 g de farinha foi aplicada em bananas Maçã (Musa acuminata) armazenadas a 27ºC e 65% UR. Assim, foi avaliado o efeito da cobertura na qualidade pós-colheita das bananas em função à suas características físico-químicas como perda de massa, firmeza da polpa, pH, acidez titulável, sólidos solúveis, açúcares redutores e cor da casca. Os resultados mostraram que a cobertura foi eficiente em diminuir a perda de massa, o teor de açúcares redutores, a acidez, a perda da firmeza e a cor da casca principalmente durante a etapa de maturação do fruto. Entretanto, não foi observado grande efeito da cobertura sobre o pH e o teor de sólidos solúveis durante o período estudado. As bananas sem a cobertura tiveram vida útil de 6 dias, enquanto as bananas com cobertura tiveram vida útil de 9 dias.
Resumo:
This thesis studies the rural collective action processes between 1920 and 1965 in Ecuador with a social history and political sociology approach. An approximation is carried out towards the conflicts, mobilizations and protests where indigenous and not indigenous peasants participated. Because of this, they are considered two periods, the first one that last from 1931 to 1947, sealed by the political instability and a constant change of governments; and the second one between 1948 and 1965, in a phase of successive constitutionally governments that ruled between 1948 and 1960. The conflicts and rural mobilizations reached a major visibility since 1958, deeply affecting the public opinion. The importance and magnitude of the rural mobilizations between 1959 and 1963 generated a controversy on their political effects in the agrarian change. Certainly, the rural mobilizations influenced in the outcome that took the political crisis, which concluded in the implantation of a military government in 1963. This government issued an Agrarian Reform Law in 1964, which modified partially the working relations and the land ownership. And, in addition, it defined a new type of military intervention in the policies that combined repression with reforms. The existence of a landowner social segment that backed a reform in the rural highland (sierra) society has been generally identified by Galo Plaza's figure. In his government (1948-1952), transformations were accentuated in the State intervention, mainly orientated towards the economic and political modernization. This was a new moment of coastal agro-exportation development with the leadership of the banana production. There were stimulated measures of promotion of the production and exportation of bananas. So, the road infrastructure was intensively spread and connected the producing zones with the export ports...
Resumo:
Unripe banana flour (UBF) production employs bananas not submitted to maturation process, is an interesting alternative to minimize the fruit loss reduction related to inappropriate handling or fast ripening. The UBF is considered as a functional ingredient improving glycemic and plasma insulin levels in blood, have also shown efficacy on the control of satiety, insulin resistance. The aim of this work was to study the drying process of unripe banana slabs (Musa cavendishii, Nanicão) developing a transient drying model through mathematical modeling with simultaneous moisture and heat transfer. The raw material characterization was performed and afterwards the drying process was conducted at 40 ºC, 50 ºC e 60 ºC, the product temperature was recorded using thermocouples, the air velocity inside the chamber was 4 m·s-1. With the experimental data was possible to validate the diffusion model based on the Fick\'s second law and Fourier. For this purpose, the sorption isotherms were measured and fitted to the GAB model estimating the equilibrium moisture content (Xe), 1.76 [g H2O/100g d.b.] at 60 ºC and 10 % of relative humidity (RH), the thermophysical properties (k, Cp, ?) were also measured to be used in the model. Five cases were contemplated: i) Constant thermophysical properties; ii) Variable properties; iii) Mass (hm), heat transfer (h) coefficient and effective diffusivity (De) estimation 134 W·m-2·K-1, 4.91x10-5 m-2·s-1 and 3.278?10-10 m·s-2 at 60 ºC, respectively; iv) Variable De, it presented a third order polynomial behavior as function of moisture content; v) The shrinkage had an effect on the mathematical model, especially in the 3 first hours of process, the thickness experienced a contraction of about (30.34 ± 1.29) % out of the initial thickness, finding two decreasing drying rate periods (DDR I and DDR II), 3.28x10-10 m·s-2 and 1.77x10-10 m·s-2, respectively. COMSOL Multiphysics simulations were possible to perform through the heat and mass transfer coefficient estimated by the mathematical modeling.
Resumo:
The biochemical and molecular basis of chlorophyll (Chl) catabolism in bananas was investigated during ripening at 20°C and at an elevated temperature (35°C) where degreening is inhibited. Biochemical analysis showed that Chl breakdown products could be isolated from fruit ripened at both temperatures. The coloured breakdown products, chlorophyllide and pheophorbide, were not detected at any stage of ripening in the two treatments; however, a non-fluorescent Chl catabolite accumulated to a higher concentration at 20 than at 35°C. To investigate the ripening-related gene expression associated with these changes, a cDNA library was generated from the peel of fruit ripened at 20°C. Differential screening of this library produced 20 non-redundant families of clones including those encoding enzymes involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation and other metabolic events. The expression of these genes was followed by northern analysis in fruit ripened at 20 and 35°C.
Resumo:
Mode of access: Internet.
Resumo:
Stafleu, Suppl. 4
Resumo:
This case study reports the post-harvest qualities of conventionally versus organically grown banana fruit from nearby plantations in the Dominican Republic. The comparison involved six repeated harvests over the transition from cooler to hotter seasons. Green mature Cavendish 'Grande Naine' banana fruit were shipped to the UK. They were triggered to ripen with ethylene gas and kept under simulated retail conditions. Fruit mass, colour, firmness and flavour parameters were measured every second day over 12 d of shelf life. Sensory comparisons were conducted on four of the six harvest times. Significant differences (P<0.05) in measured quality attributes between conventionally and organically grown fruit were few and marginal. Moreover, any differences were inconsistent across harvest-times and during shelf life. Thus, organically and conventionally grown product had almost identical qualities. Sensory comparison confirmed that there was no flavour difference. This case study provides data that challenge a general perception that organic bananas have better flavour than conventional bananas.