932 resultados para Banach Limit


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a derivation of the adjoint low Mach number equations and their implementation and validation within a global mode solver. The advantage of using the low Mach number equations and their adjoints is that they are appropriate for flows with variable density, such as flames, but do not require resolution of acoustic waves. Two versions of the adjoint are implemented and assessed: a discrete-adjoint and a continuous-adjoint. The most unstable global mode calculated with the discrete-adjoint has exactly the same eigenvalue as the corresponding direct global mode but contains numerical artifacts near the inlet. The most unstable global mode calculated with the continuous-adjoint has no numerical artifacts but a slightly different eigenvalue. The eigenvalues converge, however, as the timestep reduces. Apart from the numerical artifacts, the mode shapes are very similar, which supports the expectation that they are otherwise equivalent. The continuous-adjoint requires less resolution and usually converges more quickly than the discrete-adjoint but is more challenging to implement. Finally, the direct and adjoint global modes are combined in order to calculate the wavemaker region of a low density jet. © 2011 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Change detection is a classic paradigm that has been used for decades to argue that working memory can hold no more than a fixed number of items ("item-limit models"). Recent findings force us to consider the alternative view that working memory is limited by the precision in stimulus encoding, with mean precision decreasing with increasing set size ("continuous-resource models"). Most previous studies that used the change detection paradigm have ignored effects of limited encoding precision by using highly discriminable stimuli and only large changes. We conducted two change detection experiments (orientation and color) in which change magnitudes were drawn from a wide range, including small changes. In a rigorous comparison of five models, we found no evidence of an item limit. Instead, human change detection performance was best explained by a continuous-resource model in which encoding precision is variable across items and trials even at a given set size. This model accounts for comparison errors in a principled, probabilistic manner. Our findings sharply challenge the theoretical basis for most neural studies of working memory capacity.