523 resultados para Balthazar
Resumo:
Purpose of reviewTo critically discuss the neuropsychiatric symptoms in the prodromal stages of dementia in order to improve the early clinical diagnosis of cognitive and functional deterioration.Recent findingsCurrent criteria for cognitive syndrome, including Alzheimer's disease, comprise the neuropsychiatric symptoms in addition to cognitive and functional decline. Although there is growing evidence that neuropsychiatric symptoms may precede the prodromal stages of dementia, these manifestations have received less attention than traditional clinical hallmarks such as cognitive and functional deterioration. Depression, anxiety, apathy, irritability, agitation, sleep disorders, among other symptoms, have been hypothesized to represent a prodromal stage of dementia or, at least, they increase the risk for conversion from minor neurocognitive disorder to major neurocognitive disorder. Longitudinal investigations have provided increased evidence of progression to dementia in individuals with minor neurocognitive disorder when neuropsychiatric symptoms also were present.SummaryAlthough neuropsychiatric symptoms are strongly associated with a higher risk of cognitive and functional deterioration, frequently the clinician does not acknowledge these conditions as increasing the risk of dementia. When the clinician accurately diagnoses neuropsychiatric symptoms in the prodromal stage of dementia, he could early establish appropriate treatment and, may be, delay the beginning of clinical and functional deterioration.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An excitation force that is not influenced by the system state is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist at a certain level. This manifestation of the law of conservation of energy is known as the Sommerfeld effect. In the case of obtaining a mathematical model for such a system, additional equations are usually necessary to describe the vibration sources with limited power and its coupling with the mechanical system. In this work, a cantilever beam and a non-ideal DC motor fixed to its free end are analyzed. The motor has an unbalanced mass that provides excitation to the system which is proportional to the current applied to the motor. During the coast up operation of the motor, if the drive power is increased slowly, making the excitation frequency pass through the first natural frequency of the beam, the DC motor speed will remain the same until it suddenly jumps to a much higher value (simultaneously its amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in the Sommerfeld effect. Numerical simulations and experimental tests are used to help gather insight of this dynamic behavior. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This work, considers a vibrating system, which consists of a snap-through truss absorber (STTA) coupled to an oscillator, under excitation of an DC motor, with an eccentricity and limited power, characterizing a non-ideal oscillator (NIO). It is aimed to use the absorber STTA, to establish the conditions, that we have the maxim attenuation of the jumpphenomenon (Sommerfeld Effect). Here, weare interestedin determining the conditions of the vibrating system, in which there arereduced amplitudes of the oscillator, when it passes through the region of resonance.
Resumo:
In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE) control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.
Resumo:
A new derivation of Euler's Elastica with transverse shear effects included is presented. The elastic potential energy of bending and transverse shear is set up. The work of the axial compression force is determined. The equation of equilibrium is derived using the variation of the total potential. Using substitution of variables an exact solution is derived. The equation is transcendental and does not have a closed form solution. It is evaluated in a dimensionless form by using a numerical procedure. Finally, numerical examples of laminates made of composite material (fiber reinforced) and sandwich panels are provided.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)