908 resultados para BRCA1, DNA damage, genome stability, DNA repair, mRNA splicing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular response to radiation damage is made by a complex network of pathways and feedback loops whose spatiotemporal organisation is still unclear despite its decisive role in determining the fate of the damaged cell. Revealing the dynamic sequence of the repair proteins is therefore critical in understanding how the DNA repair mechanisms work. There are also still open questions regarding the possible movement of damaged chromatin domains and its role as trigger for lesion recognition and signalling in the DNA repair context. The single-cell approach and the high spatial resolution offered by microbeams provide the perfect tool to study and quantify the dynamic processes associated with the induction and repair of DNA damage. We have followed the development of radiation-induced foci for three DNA damage markers (i.e. γ-H2AX, 53BP1 and hSSB1) using normal fibroblasts (AG01522), human breast adenocarcinoma cells (MCF7) and human fibrosarcoma cells (HT1080) stably transfected with yellow fluorescent protein fusion proteins following irradiation with the QUB X-ray microbeam (carbon X-rays <2 µm spot). The size and intensity of the foci has been analysed as a function of dose and time post-irradiation to investigate the dynamics of the above-mentioned DNA repair processes and monitor the remodelling of chromatin structure that the cell undergoes to deal with DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair1. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein–protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer1. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both a systemic inflammatory response as well as DNA damage has been observed following exhaustive endurance exercise. Hypothetically, exercise-induced DNA damage might either be a consequence of inflammatory processes or causally involved in inflammation and immunological alterations after strenuous prolonged exercise (e.g. by inducing lymphocyte apoptosis and lymphocytopenia). Nevertheless, up to now only few studies have addressed this issue and there is hardly any evidence regarding a direct relationship between DNA or chromosomal damage and inflammatory responses in the context of exercise. The most conclusive picture that emerges from available data is that reactive oxygen and nitrogen species (RONS) appear to be the key effectors which link inflammation with DNA damage. Considering the time-courses of inflammatory and oxidative stress responses on the one hand and DNA effects on the other the lack of correlations between these responses might also be explained by too short observation periods. This review summarizes and discusses the recent findings on this topic. Furthermore, data from our own study are presented that aimed to verify potential associations between several endpoints of genome stability and inflammatory, immune-endocrine and muscle damage parameters in competitors of an Ironman triathlon until 19 days into recovery. The current results indicate that DNA effects in lymphocytes are not responsible for exercise-induced inflammatory responses. Furthermore, this investigation shows that inflammatory processes, vice versa, do not promote DNA damage, neither directly nor via an increased formation of RONS derived from inflammatory cells. Oxidative DNA damage might have been counteracted by training- and exercise-induced antioxidant responses. However, further studies are needed that combine advanced -omics based techniques (transcriptomics, proteomics) with state-of-the-art biochemical biomarkers to gain more insights into the underlying mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is commonly accepted that regular moderate intensity physical activity reduces the risk of developing many diseases. Counter intuitively, however, evidence also exists for oxidative stress resulting from acute and strenuous exercise. Enhanced formation of reactive oxygen and nitrogen species may lead to oxidatively modified lipids, proteins and nucleic acids and possibly disease. Currently, only a few studies have investigated the influence of exercise on DNA stability and damage with conflicting results, small study groups and the use of different sample matrices or methods and result units. This is the first review to address the effect of exercise of various intensities and durations on DNA stability, focusing on human population studies. Furthermore, this article describes the principles and limitations of commonly used methods for the assessment of oxidatively modified DNA and DNA stability. This review is structured according to the type of exercise conducted (field or laboratory based) and the intensity performed (i.e. competitive ultra/endurance exercise or maximal tests until exhaustion). The findings presented here suggest that competitive ultra-endurance exercise (>4h) does not induce persistent DNA damage. However, when considering the effects of endurance exercise (<4h), no clear conclusions could be drawn. Laboratory studies have shown equivocal results (increased or no oxidative stress) after endurance or exhaustive exercise. To clarify which components of exercise participation (i.e. duration, intensity and training status of subjects) have an impact on DNA stability and damage, additional carefully designed studies combining the measurement of DNA damage, gene expression and DNA repair mechanisms before, during and after exercise of differing intensities and durations are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regular moderate physical activity reduces the risk of several noncommunicable diseases. At the same time, evidence exists for oxidative stress resulting from acute and strenuous exercise by enhanced formation of reactive oxygen and nitrogen species, which may lead to oxidatively modified lipids, proteins, and possibly negative effects on DNA stability. The limited data on ultraendurance events such as an Ironman triathlon show no persistent DNA damage after the events. However, when considering the effects of endurance exercise comparable to a (half) marathon or a short triathlon distance, no clear conclusions could be drawn. In order to clarify which components of exercise participation, such as duration, intensity, frequency, or training status of the subjects, have an impact on DNA stability, more information is clearly needed that combines the measurement of DNA damage, gene expression, and DNA repair mechanisms before, during, and after exercise of differing intensities and durations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epigenetics is the study of heritable changes in gene expression that are not the result of genetic alterations. These changes include DNA methylation, histone modifications, or indeed microRNA expression. Chromatin is a tightly compacted DNA–protein complex that allows approximately two meters of DNA to be packaged inside a cell, only a few micrometers across. Although the resulting DNA structure is very stable, it is not very amiable to DNA-dependent processes, so mechanisms have to exist to allow processes such as transcription, replication, and DNA repair to occur. This chapter will look at how a cell responds to and deals with genomic instability at the epigenetic level and highlight how critical chromatin remodeling is for correct DNA repair and cell survival following DNA damage. This chapter will initially look at the DNA repair pathways that function in human cells and then at how the repair of DNA damage is controlled by epigenetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA charge transport (CT) involves the efficient transfer of electrons or electron holes through the DNA π-stack over long molecular distances of at least 100 base-pairs. Despite this shallow distance dependence, DNA CT is sensitive to mismatches or lesions that disrupt π-stacking and is critically dependent on proper electronic coupling of the donor and acceptor moieties into the base stack. Favorable DNA CT is very rapid, occurring on the picosecond timescale. Because of this speed, electron holes equilibrate along the DNA π-stack, forming a characteristic pattern of DNA damage at low oxidation potential guanine multiplets. Furthermore, DNA CT may be used in a biological context. DNA processing enzymes with 4Fe4S clusters can perform DNA-mediated electron transfer (ET) self-exchange reactions with other 4Fe4S cluster proteins, even if the proteins are quite dissimilar, as long as the DNA-bound [4Fe4S]3+/2+ redox potentials are conserved. This mechanism would allow low copy number DNA repair proteins to find their lesions efficiently within the cell. DNA CT may also be used biologically for the long-range, selective activation of redox-active transcription factors. Within this work, we pursue other proteins that may utilize DNA CT within the cell and further elucidate aspects of the DNA-mediated ET self-exchange reaction of 4Fe4S cluster proteins.

Dps proteins, bacterial mini-ferritins that protect DNA from oxidative stress, are implicated in the survival and virulence of pathogenic bacteria. One aspect of their protection involves ferroxidase activity, whereby ferrous iron is bound and oxidized selectively by hydrogen peroxide, thereby preventing formation of damaging hydroxyl radicals via Fenton chemistry. Understanding the specific mechanism by which Dps proteins protect the bacterial genome could inform the development of new antibiotics. We investigate whether DNA-binding E. coli Dps can utilize DNA CT to protect the genome from a distance. An intercalating ruthenium photooxidant was employed to generate oxidative DNA damage via the flash-quench technique, which localizes to a low potential guanine triplet. We find that Dps loaded with ferrous iron, in contrast to Apo-Dps and ferric iron-loaded Dps which lack available reducing equivalents, significantly attenuates the yield of oxidative DNA damage at the guanine triplet. These data demonstrate that ferrous iron-loaded Dps is selectively oxidized to fill guanine radical holes, thereby restoring the integrity of the DNA. Luminescence studies indicate no direct interaction between the ruthenium photooxidant and Dps, supporting the DNA-mediated oxidation of ferrous iron-loaded Dps. Thus DNA CT may be a mechanism by which Dps efficiently protects the genome of pathogenic bacteria from a distance.

Further work focused on spectroscopic characterization of the DNA-mediated oxidation of ferrous iron-loaded Dps. X-band EPR was used to monitor the oxidation of DNA-bound Dps after DNA photooxidation via the flash-quench technique. Upon irradiation with poly(dGdC)2, a signal arises with g = 4.3, consistent with the formation of mononuclear high-spin Fe(III) sites of low symmetry, the expected oxidation product of Dps with one iron bound at each ferroxidase site. When poly(dGdC)2 is substituted with poly(dAdT)2, the yield of Dps oxidation is decreased significantly, indicating that guanine radicals facilitate Dps oxidation. The more favorable oxidation of Dps by guanine radicals supports the feasibility of a long-distance protection mechanism via DNA CT where Dps is oxidized to fill guanine radical holes in the bacterial genome produced by reactive oxygen species.

We have also explored possible electron transfer intermediates in the DNA-mediated oxidation of ferrous iron-loaded Dps. Dps proteins contain a conserved tryptophan residue in close proximity to the ferroxidase site (W52 in E. coli Dps). In comparison to WT Dps, in EPR studies of the oxidation of ferrous iron-loaded Dps following DNA photooxidation, W52Y and W52A mutants were deficient in forming the characteristic EPR signal at g = 4.3, with a larger deficiency for W52A compared to W52Y. In addition to EPR, we also probed the role of W52 Dps in cells using a hydrogen peroxide survival assay. Bacteria containing W52Y Dps survived the hydrogen peroxide challenge more similarly to those containing WT Dps, whereas cells with W52A Dps died off as quickly as cells without Dps. Overall, these results suggest the possibility of W52 as a CT hopping intermediate.

DNA-modified electrodes have become an essential tool for the study of the redox chemistry of DNA processing enzymes with 4Fe4S clusters. In many cases, it is necessary to investigate different complex samples and substrates in parallel in order to elucidate this chemistry. Therefore, we optimized and characterized a multiplexed electrochemical platform with the 4Fe4S cluster base excision repair glycosylase Endonuclease III (EndoIII). Closely packed DNA films, where the protein has limited surface accessibility, produce EndoIII electrochemical signals sensitive to an intervening mismatch, indicating a DNA-mediated process. Multiplexed analysis allowed more robust characterization of the CT-deficient Y82A EndoIII mutant, as well as comparison of a new family of mutations altering the electrostatics surrounding the 4Fe4S cluster in an effort to shift the reduction potential of the cluster. While little change in the DNA-bound midpoint potential was found for this family of mutants, likely indicating the dominant effect of DNA-binding on establishing the protein redox potential, significant variations in the efficiency of DNA-mediated electron transfer were apparent. On the basis of the stability of these proteins, examined by circular dichroism, we proposed that the electron transfer pathway in EndoIII can be perturbed not only by the removal of aromatic residues but also through changes in solvation near the cluster.

While the 4Fe4S cluster of EndoIII is relatively insensitive to oxidation and reduction in solution, we have found that upon DNA binding, the reduction potential of the [4Fe4S]3+/2+ couple shifts negatively by approximately 200 mV, bringing this couple into a physiologically relevant range. Demonstrated using electrochemistry experiments in the presence and absence of DNA, these studies do not provide direct molecular evidence for the species being observed. Sulfur K-edge X-ray absorbance spectroscopy (XAS) can be used to probe directly the covalency of iron-sulfur clusters, which is correlated to their reduction potential. We have shown that the Fe-S covalency of the 4Fe4S cluster of EndoIII increases upon DNA binding, stabilizing the oxidized [4Fe4S]3+ cluster, consistent with a negative shift in reduction potential. The 7% increase in Fe-S covalency corresponds to an approximately 150 mV shift, remarkably similar to DNA electrochemistry results. Therefore we have obtained direct molecular evidence for the shift in 4Fe4S reduction potential of EndoIII upon DNA binding, supporting the feasibility of our model whereby these proteins can utilize DNA CT to cooperate in order to efficiently find DNA lesions inside cells.

In conclusion, in this work we have explored the biological applications of DNA CT. We discovered that the DNA-binding bacterial ferritin Dps can protect the bacterial genome from a distance via DNA CT, perhaps contributing to pathogen survival and virulence. Furthermore, we optimized a multiplexed electrochemical platform for the study of the redox chemistry of DNA-bound 4Fe4S cluster proteins. Finally, we have used sulfur K-edge XAS to obtain direct molecular evidence for the negative shift in 4Fe4S cluster reduction potential of EndoIII upon DNA binding. These studies contribute to the understanding of DNA-mediated protein oxidation within cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: We analyzed the association between 53 genes related to DNA repair and p53-mediated damage response and serous ovarian cancer risk using case-control data from the North Carolina Ovarian Cancer Study (NCOCS), a population-based, case-control study. METHODS/PRINCIPAL FINDINGS: The analysis was restricted to 364 invasive serous ovarian cancer cases and 761 controls of white, non-Hispanic race. Statistical analysis was two staged: a screen using marginal Bayes factors (BFs) for 484 SNPs and a modeling stage in which we calculated multivariate adjusted posterior probabilities of association for 77 SNPs that passed the screen. These probabilities were conditional on subject age at diagnosis/interview, batch, a DNA quality metric and genotypes of other SNPs and allowed for uncertainty in the genetic parameterizations of the SNPs and number of associated SNPs. Six SNPs had Bayes factors greater than 10 in favor of an association with invasive serous ovarian cancer. These included rs5762746 (median OR(odds ratio)(per allele) = 0.66; 95% credible interval (CI) = 0.44-1.00) and rs6005835 (median OR(per allele) = 0.69; 95% CI = 0.53-0.91) in CHEK2, rs2078486 (median OR(per allele) = 1.65; 95% CI = 1.21-2.25) and rs12951053 (median OR(per allele) = 1.65; 95% CI = 1.20-2.26) in TP53, rs411697 (median OR (rare homozygote) = 0.53; 95% CI = 0.35 - 0.79) in BACH1 and rs10131 (median OR( rare homozygote) = not estimable) in LIG4. The six most highly associated SNPs are either predicted to be functionally significant or are in LD with such a variant. The variants in TP53 were confirmed to be associated in a large follow-up study. CONCLUSIONS/SIGNIFICANCE: Based on our findings, further follow-up of the DNA repair and response pathways in a larger dataset is warranted to confirm these results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria are responsible for producing the vast majority of cellular ATP, and are therefore critical to organismal health [1]. They contain thir own genomes (mtDNA) which encode 13 proteins that are all subunits of the mitochondrial respiratory chain (MRC) and are essential for oxidative phosphorylation [2]. mtDNA is present in multiple copies per cell, usually between 103 and 104 , though this number is reduced during certain developmental stages [3, 4]. The health of the mitochondrial genome is also important to the health of the organism, as mutations in mtDNA lead to human diseases that collectively affect approximately 1 in 4000 people [5, 6]. mtDNA is more susceptible than nuclear DNA (nucDNA) to damage by many environmental pollutants, for reasons including the absence of Nucleotide Excision Repair (NER) in the mitochondria [7]. NER is a highly functionally conserved DNA repair pathway that removes bulky, helix distorting lesions such as those caused by ultraviolet C (UVC) radiation and also many environmental toxicants, including benzo[a]pyrene (BaP) [8]. While these lesions cannot be repaired, they are slowly removed through a process that involves mitochondrial dynamics and autophagy [9, 10]. However, when present during development in C. elegans, this damage reduces mtDNA copy number and ATP levels [11]. We hypothesize that this damage, when present during development, will result in mitochondrial dysfunction and increase the potential for adverse outcomes later in life.

To test this hypothesis, 1st larval stage (L1) C. elegans are exposed to 3 doses of 7.5J/m2 ultraviolet C radiation 24 hours apart, leading to the accumulation of mtDNA damage [9, 11]. After exposure, many mitochondrial endpoints are assessed at multiple time points later in life. mtDNA and nucDNA damage levels and genome copy numbers are measured via QPCR and real-time PCR , respectively, every 2 day for 10 days. Steady state ATP levels are measured via luciferase expressing reporter strains and traditional ATP extraction methods. Oxygen consumption is measured using a Seahorse XFe24 extra cellular flux analyzer. Gene expression changes are measured via real time PCR and targeted metabolomics via LC-MS are used to investigate changes in organic acid, amino acid and acyl-carnitine levels. Lastly, nematode developmental delay is assessed as growth, and measured via imaging and COPAS biosort.

I have found that despite being removed, UVC induced mtDNA damage during development leads to persistent deficits in energy production later in life. mtDNA copy number is permanently reduced, as are ATP levels, though oxygen consumption is increased, indicating inefficient or uncoupled respiration. Metabolomic data and mutant sensitivity indicate a role for NADPH and oxidative stress in these results, and exposed nematodes are more sensitive to the mitochondrial poison rotenone later in life. These results fit with the developmental origin of health and disease hypothesis, and show the potential for environmental exposures to have lasting effects on mitochondrial function.

Lastly, we are currently working to investigate the potential for irreparable mtDNA lesions to drive mutagenesis in mtDNA. Mutations in mtDNA lead to a wide range of diseases, yet we currently do not understand the environmental component of what causes them. In vitro evidence suggests that UVC induced thymine dimers can be mutagenic [12]. We are using duplex sequencing of C. elegans mtDNA to determine mutation rates in nematodes exposed to our serial UVC protocol. Furthermore, by including mutant strains deficient in mitochondrial fission and mitophagy, we hope to determine if deficiencies in these processes will further increase mtDNA mutation rates, as they are implicated in human diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular response to radiation damage is made by a complex network of pathways and feedback loops whose spatiotemporal organization is still unclear despite its decisive role in determining the fate of the damaged cell. The single-cell approach and the high spatial resolution offered by microbeams provide the perfect tool to study and quantify the dynamic processes associated with the induction and repair of DNA damage. The soft X-ray microbeam has been used to follow the development of radiation induced foci in live cells by monitoring their size and intensity as a function of dose and time using yellow fluorescent protein (YFP) tagging techniques. Preliminary data indicate a delayed and linear rising of the intensity signal indicating a slow kinetic for the accumulation of DNA repair protein 53BP1. A slow and limited foci diffusion has also been observed. Further investigations are required to assess whatever such diffusion is consistent with a random walk pattern or if it is the result of a more structured lesion processing phenomenon. In conclusion, our data indicates that the use of microbeams coupled to live cell microscopy represent a sophisticated approach for visualizing and quantifying the dynamics changes of DNA proteins at the damaged sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein-protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA mismatch repair (MMR) pathway detects and repairs DNA replication errors. While DNA MMR-proficiency is known to play a key role in the sensitivity to a number of DNA damaging agents, its role in the cytotoxicity of ionizing radiation (IR) is less well characterized. Available literature to date is conflicting regarding the influence of MMR status on radiosensitivity, and this has arisen as a subject of controversy in the field. The aim of this paper is to provide the first comprehensive overview of the experimental data linking MMR proteins and the DNA damage response to IR. A PubMed search was conducted using the key words "DNA mismatch repair" and "ionizing radiation". Relevant articles and their references were reviewed for their association between DNA MMR and IR. Recent data suggest that radiation dose and the type of DNA damage induced may dictate the involvement of the MMR system in the cellular response to IR. In particular, the literature supports a role for the MMR system in DNA damage recognition, cell cycle arrest, DNA repair and apoptosis. In this review we discuss our current understanding of the impact of MMR status on the cellular response to radiation in mammalian cells gained from past and present studies and attempt to provide an explanation for how MMR may determine the response to radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive urothelial cell carcinoma (UCC) is characterized by increased chromosomal instability and follows an aggressive clinical course in contrast to non-invasive disease. To identify molecular processes that confer and maintain an aggressive malignant phenotype, we used a high-throughput genome-wide approach to interrogate a cohort of high and low clinical risk UCC tumors. Differential expression analyses highlighted cohesive dysregulation of critical genes involved in the G(2)/M checkpoint in aggressive UCC. Hierarchical clustering based on DNA Damage Response (DDR) genes separated tumors according to a pre-defined clinical risk phenotype. Using array-comparative genomic hybridization, we confirmed that the DDR was disrupted in tumors displaying high genomic instability. We identified DNA copy number gains at 20q13.2-q13.3 (AURKA locus) and determined that overexpression of AURKA accompanied dysregulation of DDR genes in high risk tumors. We postulated that DDR-deficient UCC tumors are advantaged by a selective pressure for AURKA associated override of M phase barriers and confirmed this in an independent tissue microarray series. This mechanism that enables cancer cells to maintain an aggressive phenotype forms a rationale for targeting AURKA as a therapeutic strategy in advanced stage UCC.