855 resultados para BRAIN HEMORRHAGE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epigenetics plays a crucial role in schizophrenia susceptibility. In a previous study, we identified over 4500 differentially methylated sites in prefrontal cortex (PFC) samples from schizophrenia patients. We believe this was the first genome-wide methylation study performed on human brain tissue using the Illumina Infinium HumanMethylation450 Bead Chip. To understand the biological significance of these results, we sought to identify a smaller number of differentially methylated regions (DMRs) of more functional relevance compared with individual differentially methylated sites. Since our schizophrenia whole genome methylation study was performed, another study analysing two separate data sets of post-mortem tissue in the PFC from schizophrenia patients has been published. We analysed all three data sets using the bumphunter function found in the Bioconductor package minfi to identify regions that are consistently differentially methylated across distinct cohorts. We identified seven regions that are consistently differentially methylated in schizophrenia, despite considerable heterogeneity in the methylation profiles of patients with schizophrenia. The regions were near CERS3, DPPA5, PRDM9, DDX43, REC8, LY6G5C and a region on chromosome 10. Of particular interest is PRDM9 which encodes a histone methyltransferase that is essential for meiotic recombination and is known to tag genes for epigenetic transcriptional activation. These seven DMRs are likely to be key epigenetic factors in the aetiology of schizophrenia and normal brain neurodevelopment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a study towards elucidating the role of aromatases during puberty in female grey mullet, the cDNAs of the brain (muCyp19b) and ovarian (muCyp19a) aromatase were isolated by RT-PCR and their relative expression levels were determined by quantitative real-time RT-PCR. The muCyp19a ORF of 1515 bp encoded 505 predicted amino acid residues, while that of muCyp19b was 1485 bp and encoded 495 predicted amino acid residues. The expression level of muCyp19b significantly increased in the brain as puberty advanced; however, its expression level in the pituitary increased only slightly with pubertal development. In the ovary, the muCyp19a expression level markedly increased as puberty progressed. The promoter regions of the two genes were also isolated and their functionality evaluated in vitro using luciferase as the reporter gene. The muCyp19a promoter sequence (650 bp) contained a consensus TATA box and putative transcription factor binding sites, including two half EREs, an SF-1, an AhR/Arnt, a PR and two GATA-3s. The muCyp19b promoter sequence (2500 bp) showed consensus TATA and CCAAT boxes and putative transcription binding sites, namely: a PR, an ERE, a half ERE, a SP-1, two GATA-binding factor, one half GATA-1, two C/EBPs, a GRE, a NFkappaB, three STATs, a PPAR/RXR, an Ahr/Arnt and a CRE. Basal activity of serially deleted promoter constructs transiently transfected into COS-7, [alpha]T3 and TE671 cells demonstrated the enhancing and silencing roles of the putative transcription factor binding sites. Quinpirole, a dopamine agonist, significantly reduced the promoter activity of muCyp19b in TE671. The results suggest tissue-specific regulation of the muCyp19 genes and a putative alternative promoter for muCyp19b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of vascular cognitive impairment (VCI) covers a wide spectrum of cognitive dysfunctions related to cerebrovascular disease. Among the pathophysiological determinants of VCI are cerebral stroke, white matter lesions and brain atrophy, which are known to be important risk factors for dementia. However, the specific mechanisms behind the brain abnormalities and cognitive decline are still poorly understood. The present study investigated the neuropsychological correlates of particular magnetic resonance imaging (MRI) findings, namely, medial temporal lobe atrophy (MTA), white matter hyperintensities (WMH), general cortical atrophy and corpus callosum (CC) atrophy in subjects with cerebrovascular disease. Furthermore, the cognitive profile of subcortical ischaemic vascular disease (SIVD) was examined. This study was conducted as part of two large multidisciplinary study projects, the Helsinki Stroke Aging Memory (SAM) Study and the multinational Leukoaraiosis and Disability (LADIS) Study. The SAM cohort consisted of 486 patients, between 55 and 85 years old, with ischaemic stroke from the Helsinki University Hospital, Helsinki, Finland. The LADIS Study included a mixed sample of subjects (n=639) with age-related WMH, between 65 and 84 years old, gathered from 11 centres around Europe. Both studies included comprehensive clinical and neuropsychological assessments and detailed brain MRI. The relationships between the MRI findings and the neuropsychological test performance were analysed by controlling for relevant confounding factors such as age, education and other coexisting brain lesions. The results revealed that in elderly patients with ischaemic stroke, moderate to severe MTA was specifically related to impairment of memory and visuospatial functions, but mild MTA had no clinical relevance. Instead, WMH were primarily associated with executive deficits and mental slowing. These deficits mediated the relationship between WMH and other, secondary cognitive deficits. Cognitive decline was best predicted by the overall degree of WMH, whereas the independent contribution of regional WMH measures was low. Executive deficits were the most prominent cognitive characteristic in SIVD. Compared to other stroke patients, the patients with SIVD also presented more severe memory deficits, which were related to MTA. The cognitive decline in SIVD occurred independently of depressive symptoms and, relative to healthy control subjects, it was substantial in severity. In stroke patients, general cortical atrophy also turned out to be a strong predictor of cognitive decline in a wide range of cognitive domains. Moreover, in elderly subjects with WMH, overall CC atrophy was related to reduction in mental speed, while anterior CC atrophy was independently associated with frontal lobe-mediated executive functions and attention. The present study provides cross-sectional evidence for the involvement of WMH, MTA, general cortical atrophy and CC atrophy in VCI. The results suggest that there are multifaceted pathophysiological mechanisms behind VCI in the elderly, including both vascular ischaemic lesions and neurodegenerative changes. The different pathological changes are highly interrelated processes and together they may produce cumulative effects on cognitive decline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans are a social species with the internal capability to process social information from other humans. To understand others behavior and to react accordingly, it is necessary to infer their internal states, emotions and aims, which are conveyed by subtle nonverbal bodily cues such as postures, gestures, and facial expressions. This thesis investigates the brain functions underlying the processing of such social information. Studies I and II of this thesis explore the neural basis of perceiving pain from another person s facial expressions by means of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). In Study I, observing another s facial expression of pain activated the affective pain system (previously associated with self-experienced pain) in accordance with the intensity of the observed expression. The strength of the response in anterior insula was also linked to the observer s empathic abilities. The cortical processing of facial pain expressions advanced from the visual to temporal-lobe areas at similar latencies (around 300 500 ms) to those previously shown for emotional expressions such as fear or disgust. Study III shows that perceiving a yawning face is associated with middle and posterior STS activity, and the contagiousness of a yawn correlates negatively with amygdalar activity. Study IV explored the brain correlates of interpreting social interaction between two members of the same species, in this case human and canine. Observing interaction engaged brain activity in very similar manner for both species. Moreover, the body and object sensitive brain areas of dog experts differentiated interaction from noninteraction in both humans and dogs whereas in the control subjects, similar differentiation occurred only for humans. Finally, Study V shows the engagement of the brain area associated with biological motion when exposed to the sounds produced by a single human being walking. However, more complex pattern of activation, with the walking sounds of several persons, suggests that as the social situation becomes more complex so does the brain response. Taken together, these studies demonstrate the roles of distinct cortical and subcortical brain regions in the perception and sharing of others internal states via facial and bodily gestures, and the connection of brain responses to behavioral attributes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal oscillations are thought to underlie interactions between distinct brain regions required for normal memory functioning. This study aimed at elucidating the neuronal basis of memory abnormalities in neurodegenerative disorders. Magnetoencephalography (MEG) was used to measure oscillatory brain signals in patients with Alzheimer s disease (AD), a neurodegenerative disease causing progressive cognitive decline, and mild cognitive impairment (MCI), a disorder characterized by mild but clinically significant complaints of memory loss without apparent impairment in other cognitive domains. Furthermore, to help interpret our AD/MCI results and to develop more powerful oscillatory MEG paradigms for clinical memory studies, oscillatory neuronal activity underlying declarative memory, the function which is afflicted first in both AD and MCI, was investigated in a group of healthy subjects. An increased temporal-lobe contribution coinciding with parieto-occipital deficits in oscillatory activity was observed in AD patients: sources in the 6 12.5 Hz range were significantly stronger in the parieto-occipital and significantly weaker in the right temporal region in AD patients, as compared to MCI patients and healthy elderly subjects. Further, the auditory steady-state response, thought to represent both evoked and induced activity, was enhanced in AD patients, as compared to controls, possibly reflecting decreased inhibition in auditory processing and deficits in adaptation to repetitive stimulation with low relevance. Finally, the methodological study revealed that successful declarative encoding and retrieval is associated with increases in occipital gamma and right hemisphere theta power in healthy unmedicated subjects. This result suggests that investigation of neuronal oscillations during cognitive performance could potentially be used to investigate declarative memory deficits in AD patients. Taken together, the present results provide an insight on the role of brain oscillatory activity in memory function and memory disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective attention refers to the process in which certain information is actively selected for conscious processing, while other information is ignored. The aim of the present studies was to investigate the human brain mechanisms of auditory and audiovisual selective attention with functional magnetic resonance imaging (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). The main focus was on attention-related processing in the auditory cortex. It was found that selective attention to sounds strongly enhances auditory cortex activity associated with processing the sounds. In addition, the amplitude of this attention-related modulation was shown to increase with the presentation rate of attended sounds. Attention to the pitch of sounds and to their location appeared to enhance activity in overlapping auditory-cortex regions. However, attention to location produced stronger activity than attention to pitch in the temporo-parietal junction and frontal cortical regions. In addition, a study on bimodal attentional selection found stronger audiovisual than auditory or visual attention-related modulations in the auditory cortex. These results were discussed in light of Näätänen s attentional-trace theory and other research concerning the brain mechanisms of selective attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines brain networks involved in auditory attention and auditory working memory using measures of task performance, brain activity, and neuroanatomical connectivity. Auditory orienting and maintenance of attention were compared with visual orienting and maintenance of attention, and top-down controlled attention was compared to bottom-up triggered attention in audition. Moreover, the effects of cognitive load on performance and brain activity were studied using an auditory working memory task. Corbetta and Shulman s (2002) model of visual attention suggests that what is known as the dorsal attention system (intraparietal sulcus/superior parietal lobule, IPS/SPL and frontal eye field, FEF) is involved in the control of top-down controlled attention, whereas what is known as the ventral attention system (temporo-parietal junction, TPJ and areas of the inferior/middle frontal gyrus, IFG/MFG) is involved in bottom-up triggered attention. The present results show that top-down controlled auditory attention also activates IPS/SPL and FEF. Furthermore, in audition, TPJ and IFG/MFG were activated not only by bottom-up triggered attention, but also by top-down controlled attention. In addition, the posterior cerebellum and thalamus were activated by top-down controlled attention shifts and the ventromedial prefrontal cortex (VMPFC) was activated by to-be-ignored, but attention-catching salient changes in auditory input streams. VMPFC may be involved in the evaluation of environmental events causing the bottom-up triggered engagement of attention. Auditory working memory activated a brain network that largely overlapped with the one activated by top-down controlled attention. The present results also provide further evidence of the role of the cerebellum in cognitive processing: During auditory working memory tasks, both activity in the posterior cerebellum (the crus I/II) and reaction speed increased when the cognitive load increased. Based on the present results and earlier theories on the role of the cerebellum in cognitive processing, the function of the posterior cerebellum in cognitive tasks may be related to the optimization of response speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, effects of stimulus repetition and change in a continuous stimulus stream on the processing of somatosensory information in the human brain were studied. Human scalp-recorded somatosensory event-related potentials (ERPs) and magnetoencephalographic (MEG) responses rapidly diminished with stimulus repetition when mechanical or electric stimuli were applied to fingers. On the contrary, when the ERPs and multi-unit a ctivity (MUA) were directly recorded from the primary (SI) and secondary (SII) somatosensory cortices in a monkey, there was no marked decrement in the somatosensory responses as a function of stimulus repetition. These results suggest that this rate effect is not due to the response diminution in the SI and SII cortices. Obviously the responses to the first stimulus after a long "silent" period are nhanced due to unspecific initial orientation, originating in more broadly distributed and/or deeper neural structures, perhaps in the prefrontal cortices. With fast repetition rates not only the late unspecific but also some early specific somatosensory ERPs were diminished in amplitude. The fast decrease of the ERPs as a function of stimulus repetition is mainly due to the disappearance of the orientation effect and with faster repetition rates additively due to stimulus specific refractoriness. A sudden infrequent change in the continuous stimulus stream also enhanced somatosensory MEG responses to electric stimuli applied to different fingers. These responses were quite similar to those elicited by the deviant stimuli alone when the frequent standard stimuli were omitted. This enhancement was obviously due to the release from refractoriness because the neural structures generating the responses to the infrequent deviants had more time to recover from the refractoriness than the respective structures for the standards. Infrequent deviant mechanical stimuli among frequent standard stimuli also enhanced somatosensory ERPs and, in addition, they elicited a new negative wave which did not occur in the deviants-alone condition. This extra negativity could be recorded to deviations in the stimulation site and in the frequency of the vibratory stimuli. This response is probably a somatosensory analogue of the auditory mismatch negativity (MMN) which has been suggested to reflect a neural mismatch process between the sensory input and the sensory memory trace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary brain tumors are associated with significant physical, cognitive and psychosocial changes. Although treatment guidelines recommend offering multidisciplinary rehabilitation and support services to address patients’ residual deficits, the extent to which patients access such services is unclear. This study aimed to assess patients’ supportive care needs early after diagnosis, and quantify service awareness, referral and utilization. A population-based sample of 40 adults recently diagnosed with primary brain tumors was recruited through the Queensland Cancer Registry, representing 18.9% of the eligible population of 203 patients. Patients or carer proxies completed surveys of supportive care needs at baseline (approximately three months after diagnosis) and three months later. Descriptive statistics summarized needs and service utilization, and linear regression identified predictors of service use. Unmet supportive care needs were highest at baseline for all domains, and highest for the physical and psychological needs domains at each time point. At follow-up, participants reported awareness of, referral to, and use of 32 informational, support, health professional or practical services. All or almost all participants were aware of at least one informational (100%), health professional (100%), support (97%) or practical service (94%). Participants were most commonly aware of speech therapists (97%), physiotherapists (94%) and diagnostic information from the internet (88%). Clinician referrals were most commonly made to physiotherapists (53%), speech therapists (50%) and diagnostic information booklets (44%), and accordingly, participants most commonly used physiotherapists (56%), diagnostic information booklets (47%), diagnostic information from the internet (47%), and speech therapists (43%). Comparatively low referral to and use of psychosocial services may limit patients’ abilities to cope with their condition and the changes they experience.