975 resultados para BOSE-EINSTEIN CONDENSATE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Bose-Einstein correlations are studied in semileptonic (WW → qq̄lv) and fully hadronic (WW → qq̄qq̄) W-pair decays with the ALEPH detector at LEP at centre-of-mass energies of 172, 183 and 189 GeV. They are compared with those made at the Z peak after correction for the different flavour compositions. A Monte Carlo model of Bose-Einstein correlations based on the JETSET hadronization scheme was tuned to the Z data and reproduces the correlations in the WW → qq̄lv events. The same Monte Carlo reproduces the correlations in the WW → qq̄qq̄ channel assuming independent fragmentation of the two W's. A variant of this model with Bose-Einstein correlations between decay products of different W's is disfavoured. (C) 2000 Published by Elsevier Science B.V.
Resumo:
The atomic tunneling between two tunnel-coupled Bose-Einstein condensates (BECs) in a double-well time-dependent trap was studied. For the slowly varying trap, synchronization of oscillations of the trap with oscillations of the relative population was predicted. Using the Melnikov approach, the appearance of the chaotic oscillations in the tunneling phenomena between the condensates was confirmed.
Resumo:
A quantitative analysis of the critical number of attractive Bose-Einstein condensed atoms in asymmetric traps was studied. The Gross-Pitaevskii (GP) formalism for an atomic system with arbitrary nonspherically symmetric harmonic trap was also discussed. Characteristic limits were obtained for reductions from three to two and one dimensions from three to two and one dimensions, in perfect cylindrical symmetries as well as in deformed ones.
Resumo:
The investigation of the dynamics of a discrete soliton in an array of Bose-Einstein condensates under the action of a periodically time-modulated atomic scattering length [Feshbach-resonance management (FRM)] was discussed. The slow and rapid modulations, in comparison with the tunneling frequency were considered. An averaged equation, which was a generalized discrete nonlinear Schrödinger equation, including higher-order effective nonlinearities and intersite nonlinear interactions was derived in the case of the rapid modulation. It was demonstrated that the modulations of sufficient strength results in splitting of the soliton by direct simulations.
Resumo:
We show that self-localized ground states can be created in the spin-balanced gas of fermions with repulsion between the spin components, whose strength grows from the center to periphery, in combination with the harmonic-oscillator (HO) trapping potential acting in one or two transverse directions. We also consider the ground state in the noninteracting Fermi gas under the action of the spatially growing tightness of the one- or two-dimensional (1D or 2D) HO confinement. These settings are considered in the framework of the Thomas-Fermi-von Weizsäcker (TF-vW) density functional. It is found that the vW correction to the simple TF approximation (the gradient term) is nearly negligible in all situations. The properties of the ground state under the action of the 2D and 1D HO confinement with the tightness growing in the transverse directions are investigated too for the Bose-Einstein condensate with the self-repulsive nonlinearity. © 2013 American Physical Society.
Resumo:
Trapped degenerate dipolar Bose and Fermi gases of the cylindrical symmetry with the polarization vector along the symmetry axis are only stable for the strength of dipolar interaction below a critical value. In the case of bosons, the stability of such a dipolar Bose-Einstein condensate (BEC) is investigated for different strengths of contact and dipolar interactions using a variational approximation and a numerical solution of a mean-field model. In the disc shape, with the polarization vector perpendicular to the plane of the disc, the atoms experience an overall dipolar repulsion and this fact should contribute to the stability. However, a complete numerical solution of the dynamics leads to the collapse of a strongly disc-shaped dipolar BEC due to the long-range anisotropic dipolar interaction. In the case of fermions, the stability of a trapped single-component degenerate dipolar Fermi gas is studied including the Hartree-Fock exchange and Brueckner-Goldstone correlation energies in the local-density approximation valid for a large number of atoms. Estimates for the maximum allowed number of polar Bose and Fermi molecules in the BEC and degenerate Fermi gas are given. © 2013 IOP Publishing Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Multidimensional and one-dimensional quantum-statistical (Bose-Einstein) correlations are measured in proton proton collisions at 0.9, 2.76 and 7 TeV, in proton lead collisions at 5.02 TeV/nucleon pair and peripheral lead lead collisions at 2.76 TeV/nucleon pair center-of-mass energy with the CMS detector at the LHC. The correlation functions are extracted in terms of different components of the relative momentum of the pair, in order to investigate the extension of the emission source in different directions. The results are presented for different intervals of transverse pair momentum, k(T), and charged particle multiplicity of the collision, N-tracks, as well as for their integrated values. Besides inclusive charged particles, charged pions and kaons, identified via their energy loss in the silicon tracker detector, can also be correlated. The extracted source radii increase with increasing multiplicity, and decrease with increasing k(T). The results open the possibility to study scaling and factorization properties of these radii as a function of multiplicity, k(T), colliding system size and center-of-mass energy.
Resumo:
A Bose-Einstein condensation (BEC) has been observed in magnetic insulators in the last decade. The condensed bosons are magnons associated with an ordered magnetic phase induced by a magnetic field. We review the experiments in the spin-gap compound NiCl2-4SC(NH2)(2), in which the formation of BEC occurs by applying a magnetic field at low temperatures. This is a contribution to the celebration of the 50th anniversary of the Solid State and Low Temperature Laboratory of the University of So Paulo, where this compound was first magnetically characterized.