912 resultados para BIOMATERIALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this in vitro study was to determine whether the vicinity of root dentine that had been restored with fluoride-releasing materials was at reduced risk for erosive/abrasive wear compared to root dentine restored with a non-fluoride-containing material. According to a randomized complete block design, standardized cavities prepared on the surface of 150 bovine root dentine slabs were restored with glass-ionomer cement, resin-modified glass ionomer, polyacid-modified resin composite, fluoride-containing or conventional composite. Specimens were coated with two layers of an acid-resistant nail varnish exposing half of the dentine surface and half of the restoration. Subsequently, specimens were either eroded in an acidic drink or left uneroded, then exposed to artificial saliva and abraded in a toothbrushing machine. Wear depth in the vicinity of restorations was quantified by a stylus profilometer, based on the nonabraded areas surrounding the erosion/abrasion region. Two-way ANOVA did not demonstrate significant interaction between restoratives and eroded-uneroded dentine (p = 0.5549) nor significant difference among restorative materials (p = 0.8639). Tukey`s test ascertained that the wear depth was higher for eroded than for uneroded groups. Fluoride-releasing materials seemed to negligibly inhibit wear in the vicinity of restored root dentine subjected to erosive/abrasive challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes a new test method for the assessment of the severity of environmental stress cracking of biomedical polyurethanes in a manner that minimizes the degree of subjectivity involved. The effect of applied strain and acetone pre-treatment on degradation of Pellethane 2363 80A and Pellethane 2363 55D polyurethanes under in vitro and in vivo conditions is studied. The results are presented using a magnification-weighted image rating system that allows the semi-quantitative rating of degradation based on distribution and severity of surface damage. Devices for applying controlled strain to both flat sheet and tubing samples are described. The new rating system consistently discriminated between. the effects of acetone pre-treatments, strain and exposure times in both in vitro and in vivo experiments. As expected, P80A underwent considerable stress cracking compared with P55D. P80A produced similar stress crack ratings in both in vivo and in vitro experiments, however P55D performed worse under in vitro conditions compared with in vivo. This result indicated that care must be taken when interpreting in vitro results in the absence of in vivo data. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic theological behaviour of gamma-irradiated 12.8 wt% poly(vinyl alcohol) (PVA), 12.8 wt% poly(vinyl pyrrolidone) (PVP), and a blend of 8 wt% PVA and 4.8 wt% PVP aqueous solutions have been studied pre- and post-gelation. The non-irradiated solutions displayed theological behaviour typical of dilute to semi-dilute polymer solutions, with the complex viscosity being independent of the frequency and shear rate (i.e. Newtonian behaviour) over the range of frequencies tested and the loss modulus G(omega) and storage modulus G(omega) being nearly proportional to omega and omega(2) respectively. After a set of doses of gamma-radiation, the magnitudes of the dynamic moduli G'(omega) and G(omega) increased as the absorbed dose increased, with notable differences between the two homopolymers and the blend. The stages of gelation were effectively monitored by means of dynamic theological measurements, allowing the possible mechanisms of network formation to be elucidated. The doses required for gelation of the PVA, PVP, and blend samples, determined on the basis of the Winter and Chambon criteria for gelation, were found to be 12 kGy for the 12.8 wt% PVA, 4 kGy for the 12.8 wt% PVP, and 5 kGy for the 8 wt% PVA/4.8 wt% PVP solutions. The unexpected lower gelation dose demonstrated by the blend sample, compared with predictions based on the blend composition, and the associated gelation mechanism are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines batch-to-batch variability in the production of dietary fluids and videofluoroscopy fluids of a single hospital. The material properties, such as viscosity, yield stress, and density, show significant variations between batches. Also waterbased products (i.e., cordial) provide (a) the most stability from week to week for both dietary and videofluoroscopy fluids and (b) the best dietary and videofluoroscopy fluid matches. The study also highlights the need for further research into how base substances, such as water, juice, and dairy products, react with different thickeners and with barium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone loss, either by trauma or other diseases, generates an increasing need for substitutes of this tissue. This study evaluated Bioglass as a bone substitute in the regeneration of the alveolar bone in mandibles of dogs by clinical, surgical and radiological analysis. Twenty-eight adult dogs were randomly separated into two equal groups. In each animal, a bone defect was created on the vestibular surface of the alveolar bone between the roots of the fourth right premolar tooth. In the treated group, the defect was immediately filled with bioglass, while in the control, it remained unfilled. Clinical evaluations were performed daily for a week, as well as x-rays immediately after surgery and at 8, 14, 21, 42, 60, 90 and 120 days post-operative. Most animals in both groups showed no signs of inflammation and wound healing was similar. Radiographic examination revealed a gradual increase of radiopacity in the region of the defect in the control group. In the treated group, initial radiopacity was higher than that of adjacent bone, decreasing until 21 days after surgery. Then it gradually increased until 120 days after surgery, when the defect became undetectable. The results showed that Bioglass integrates into bone tissue, is biocompatible and reduced the period for complete bone regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroactivematerials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidenefluoride),PVDF,have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal and hydrolytic degradation of electrospun gelatin membranes cross-linked with glutaraldehyde in vapor phase has been studied. In vitro degradation of gelatin membranes was evaluated in phosphate buffer saline solution at 37 ºC. After 15 days under these conditions, a weight loss of 68 % was observed, attributed to solvation and depolymerization of the main polymeric chains. Thermal degradation kinetics of the gelatin raw material and as-spun electrospun membranes showed that the electrospinning processing conditions do not influence polymer degradation. However, for cross-linked samples a decrease in the activation energy was observed, associated with the effect of glutaraldehyde cross-linking reaction in the inter- and intra-molecular hydrogen bonds of the protein. It is also shown that the electrospinning process does not affect the formation of the helical structure of gelatin chains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(hydroxybutyrate) (PHB) obtained from sugar cane was dissolved in a blend of chloroform and dimethylformamide (DMF) and electrospun at 40 ºC. By adding DMF to the solution, the electrospinning process for the PHB polymer becomes more stable, allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. The influence of processing parameters on fiber size and distribution was systematically studied. It was observed that an increase of tip inner diameter promotes a decrease of the fiber average size and a broader distribution. On the other hand, an increase of the electric field and flow rate produces an increase of fiber diameter until a maximum of ~2.0 m, but for electric fields higher than 1.5 kV.cm-1, a decrease of the fiber diameter was observed. Polymer crystalline phase seems to be independent of the processing conditions and a crystallinity degree of 53 % was found. Moreover, thermal degradation of the as-spun membrane occurs in single step degradation with activation energy of 91 kJ/mol. Furthermore, MC-3T3-E1 cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing to be dependent of concentration and solvent used. Treatment with air saturated with methanol was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570-720%), water vapour transmission rate (1083 g/m2/day) and mechanical properties (modulus of elasticity of ~126 MPa). Furthermore, the methanol-treated SELP fiber mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fiber mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of canine amniotic membrane, previously preserved in glycerin, used as a patch on the repair of experimentally-made superficial corneal ulcers and to compare corneal epithelization between the treated and non-treated groups. Xenogeneic amniotic membranes were collected aseptically and preserved in 99% glycerin at room temperature. Each animal was anesthetized and submitted to superficial corneal keratectomy of the left eye. The treated group received a fragment of canine amniotic membrane as a patch, while the control group had no treatment. The treated group showed blepharospasm, ocular discharge and conjunctival congestion. The membrane accelerated corneal repair in the beginning of the process, however, it delayed its conclusion (p<0.05). Treated eyes showed greater vessel formation and decreased corneal transparency (p<0.05). The stroma of the control group was thicker than that of the treated group (p<0.05). We suggest that amniotic membrane used in this manner can be applied as a therapy for superficial corneal ulcers in the beginning phases of the repair process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biocompatibility is a major challenge for successful application of many biomaterials. In this study the ability to coat chemically and enzymatically activated poly(L-lactic acid) (PLA) membranes with heat denatured human serum albumin to improve biocompatibility was investigated. PLA membranes hydrolyzed with NaOH or cutinase and then treated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, hydrochloride (EDAC) as a heterobifunctional cross-linker promoted the coupling single bondCOOH groups on PLA membranes and single bondNH2 groups of heat denatured human serum albumin. This resulted in increased hydrophilicity (lowest water contact angles of 43° and 35°) and highest antioxidant activity (quenching of 79 μM and 115 μM tetramethylazobisquinone (TMAMQ) for NaOH and cutinase pretreated membranes, respectively). FTIR analysis of modified PLA membranes showed new peaks attributed to human serum albumin (amide bond, NH2 and side chain stretching) appearing within 3600–3000 cm−1 and 1700–1500 cm−1 (Fig. 3). MTT studies also showed that osteoblasts-like and MC-3T3-E1 cells viability increased 2.4 times as compared to untreated PLA membranes. The study therefore shows that this strategy of modifying the surfaces of PLA polymers could significantly improve biocompatibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose new theoretical models, which generalize the classical Avrami-Nakamura models. These models are suitable to describe the kinetics of nucleation and growth in transient regime, and/or with overlapping of nucleation and growth. Simulations and predictions were performed for lithium disilicate based on data reported in the literature. One re-examined the limitations of the models currently used to interpret DTA or DSC results, and to extract the relevant kinetic parameters. Glasses and glass-ceramics with molar formulation 0.45SiO2? (0.45-x)MgO?xK2O?0.1(3CaO.P2O5) (0?x?0.090) were prepared, crystallized and studied as potential materials for biomedical applications. Substitution of K+ for Mg2+ were used to prevent devritification on cooling, to adjust the kinetics of crystallization and to modify the in vitro behaviour of resulting biomaterials. The crystallization of the glass frits was studied by DTA, XRD and SEM. Exothermic peaks were detected corresponding to bulk crystallization of whitlockite-type phosphate, Ca9MgK(PO4)7, at approximately 900ºC, and surface crystallization of a predominant forsterite phase (Mg2SiO4) at higher temperatures. XRD also revealed the presence of diopside (CaMgSi2O6 in some samples. The predominant microstructure of the phosphate phase is of the plate-type, seemingly crystallizing by a 2-dimensional growth mechanism. Impedance spectroscopy revealed significant changes in electrical behaviour, associated to crystallization of the phosphate phase. This showed that electrical measurements can be used to study the kinetics of crystallization for cases when DTA or DSC experiments reveal limitations, and to extract estimates of relevant parameters from the dependence of crystallization peak temperature, and its width at half height. In vitro studies of glasses and glass-ceramics in acelular SBF media showed bioactivity and the development of apatite layers The morphology, composition and adhesion of the apatite layer could be changed by substitution of Mg2+ by K+. Apatite layers were deposited on the surface of glass-ceramics of the nominal compositions with x=0 and 0.09, in contact with SBF at 37ºC. The adhesion of the apatite layer was quantified by the scratch test technique, having been related with SBF?s immersion time, with composition and structure of the glass phase, and with the morphology of the crystalline phase of the glass-ceramics. The structure of three glasses (x=0, 0.045 and 0.090) were investigated by MAS-NMR ( 29Si and 31P), showing that the fraction of Q3 structural units increases with the contents of Mg, and that the structure of these glasses includes orthophosphate groups (PO43-) preferentially connected to Ca2+ ions. Mg2+ ions show preference towards the silicate network. Substitution of Mg2+ by K+ allowed one to change the bioactivity. FTIR data revealed octacalcium phosphate precipitation (Ca8H2(PO4)6.5H2O) in the glass without K, while the morphology of the layer acquires the shape of partially superimposed hemispheres, spread over the surface. The glasses with K present a layer of acicular hidroxyapatite, whose crystallinity and needles thickness tend to increase along with K content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Biomédicas, 18 de Março de 2016, Universidade dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characteristic topographical features (crystallite dimensions, surface morphology and roughness) of bioceramics may influence the adsorption of proteins relevant to bone regeneration. This work aims at analyzing the influence of two distinct nanophased hydroxyapatite (HA) ceramics, HA725 and HA1000 on fibronectin (FN) and osteonectin (ON) adsorption and MC3T3-E1 osteoblast adhesion and morphology. Both substrates were obtained using the same hydroxyapatite nanocrystals aggregates and applying the sintering temperatures of 725ºC and 1000ºC, respectively. The two proteins used in this work, FN as an adhesive glycoprotein and ON as a counter-adhesive protein, are known to be involved in the early stages of osteogenesis (cell adhesion, mobility and proliferation). The properties of the nanoHA substrates had an important role in the adsorption behavior of the two studied proteins and clearly affected the MC3T3- E1 morphology, distribution and metabolic activity. HA1000 surfaces presenting slightly larger grain size, higher root-mean-square roughness (Rq), lower surface area and porosity, allowed for higher amounts of both proteins adsorbed. These substrates also revealed increased number of exposed FN cell-binding domains as well as higher affinity for osteonectin. Regarding the osteoblast adhesion results, improved viability and cell number were found for HA1000 surfaces as compared to HA725 ones, independently of the presence or type of adsorbed protein. Therefore the osteoblast adhesion and metabolic activity seemed to be more sensitive to surfaces morphology and roughness than to the type of adsorbed proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preliminary results from a bipolar industrial solidstate based Marx generator, developed for the food industry, capable of delivering 25 kV/250 A positive and negative pulses with 12 kW average power, are presented and discussed. This modular topology uses only four controlled switches per cell, 27 cells in total that can be charged up to 1000V each, the two extra cells are used for droop compensation. The triggering signals for all the switches are generated by a FPGA. Considering that biomaterials are similar to resistive type loads, experimental results from this new bipolar 25 kV modulator into resistive loads are presented and discussed.