988 resultados para BIOMATERIALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer microspheres loaded with bioactive particles, biomolecules, proteins, and/or growth factors play important roles in tissue engineering, drug delivery, and cell therapy. The conventional double emulsion method and a new method of electrospraying into liquid nitrogen were used to prepare bovine serum albumin (BAS)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The particle size, the surface morphology and the internal porous structure of the microspheres were observed using scanning electron microscopy (SEM). The loading efficiency, the encapsulation efficiency, and the release profile of the BSA-loaded PLGA microspheres were measured and studied. It was shown that the microspheres from double emulsion had smaller particle sizes (3-50 m), a less porous structure, a poor loading efficiency (5.2 %), and a poor encapsulation efficiency (43.5%). However, the microspheres from the electrospraying into liquid nitrogen had larger particle sizes (400-600 m), a highly porous structure, a high loading efficiency (12.2%), and a high encapsulation efficiency (93.8%). Thus the combination of electrospraying with freezing in liquid nitrogen and subsequent freeze drying represented a suitable way to produce polymer microspheres for effective loading and sustained release of proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alginate microspheres are considered a promising material as a drug carrier in bone repair due to excellent biocompatibility, but their main disadvantage is low drug entrapment efficiency and non-controllable release. The aim of this study was to investigate the effect of incorporating mesoporous bioglass (MBG), non-mesoporous bioglass (BG) or hydroxyapatite (HAp) into alginate microspheres on their drug-loading and release properties. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic emission spectroscopy (AES) were used to analyse the composition, structure and dissolution of bioactive inorganic materials and their microspheres. Dexamethasone (DEX)-loading and release ability of four microspheres were tested in phosphate buffered saline with varying pHs. Results showed that the drug-loading capacity was enhanced with the incorporation of bioactive inorganic materials into alginate microspheres. The MBG/Alginate microspheres had the highest drug loading ability. DEX release from alginate microspheres correlated to the dissolution of MBG, BG and HAp in PBS, and that the pH was an efficient factor in controlling the DEX release; a high pH resulted in greater DEX release, whereas a low pH delayed DEX release. In addition, MBG/alginate, BG/alginate and HAp/alginate microspheres had varying apatite-formation and dissolution abilities, which indicate that the composites would behave differently with respect to bioactivity. The study suggests that microspheres made of a composite of bioactive inorganic materials and alginate have a bioactivity and degradation profile which greatly improves their drug delivery capacity, thus enhancing their potential applications as bioactive filler materials for bone tissue regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the resorbable-polymer-boom of the 1970s and 1980s, polycaprolactone (PCL) was used in the biomaterials field and a number of drug-delivery devices. Its popularity was soon superseded by faster resorbable polymers which had fewer perceived disadvantages associated with long term degradation (up to 3-4 years) and intracellular resorption pathways; consequently, PCL was almost forgotten for most of two decades. Recently, a resurgence of interest has propelled PCL back into the biomaterials-arena. The superior rheological and viscoelastic properties over many of its aliphatic polyester counterparts renders PCL easy to manufacture and manipulate into a large range of implants and devices. Coupled with relatively inexpensive production routes and FDA approval, this provides a promising platform for the production of longer-term degradable implants which may be manipulated physically, chemically and biologically to possess tailorable degradation kinetics to suit a specific anatomical site. This review will discuss the application of PCL as a biomaterial over the last two decades focusing on the advantages which have propagated its return into the spotlight with a particular focus on medical devices, drug delivery and tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluate the potential of heparin as a substrate component for the fabrication of bone tissue engineering constructs using poly(e- caprolactone)–tricalcium phosphate–collagen type I (PCL–TCP–Col) three-dimensional (3-D) scaffolds. First we explored the ability of porcine bone marrow precursor cells (MPCs) to differentiate down both the adipogenic and osteogenic pathways within 2-D culture systems, with positive results confirmed by Oil-Red-O and Alizarin Red staining, respectively. Secondly, we examined the influence of heparin on the interaction and behaviour of MPCs when seeded onto PCL–TCP–Col 3-D scaffolds, followed by their induction into the osteogenic lineage. Our 3-D findings suggest that cell metabolism and proliferation increased between days 1 and 14, with deposition of extracellular matrix also observed up to 28 days. However, no noticeable difference could be detected in the extent of osteogenesis for PCL–TCP–Col scaffolds groups with the addition of heparin compared to identical control scaffolds without the addition of heparin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores the potential therapeutic role of the naturally occurring sugar heparan sulfate (HS) for the augmentation of bone repair. Scaffolds comprising fibrin glue loaded with 5 lg of embryonically derived HS were assessed, firstly as a release-reservoir, and secondly as a scaffold to stimulate bone regeneration in a critical size rat cranial defect. We show HS-loaded scaffolds have a uniform distribution of HS, which was readily released with a typical burst phase, quickly followed by a prolonged delivery lasting several days. Importantly, the released HS contributed to improved wound healing over a 3-month period as determined by microcomputed tomography (lCT) scanning, histology, histomorphometry, and PCR for osteogenic markers. In all cases, only minimal healing was observed after 1 and 3 months in the absence of HS. In contrast, marked healing was observed by 3 months following HS treatment, with nearly full closure of the defect site. PCR analysis showed significant increases in the gene expression of the osteogenic markers Runx2, alkaline phosphatase, and osteopontin in the heparin sulfate group compared with controls. These results further emphasize the important role HS plays in augmenting wound healing, and its successful delivery in a hydrogel provides a novel alternative to autologous bone graft and growth factorbased therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-sheet techniques have been proven effective in various soft tissue engineering applications. In this experiment, we investigated the feasibility of bone tissue engineering using a hybrid of mesenchymal stem cell (MSC) sheets and PLGA meshes. Porcine MSCs were cultured to a thin layer of cell sheets via osteogenic induction. Tube-like long bones were constructed by wrapping the cell sheet on to PLGA meshes resulting in constructs which could be cultured in spinner flasks, prior to implantation in nude rats. Our results showed that the sheets were composed of viable cells and dense matrix with a thickness of about 80–120 mm, mineral deposition was also observed in the sheet. In vitro cultures demonstrated calcified cartilage-like tissue formation and most PLGA meshes were absorbed during the 8-week culture period. In vivo experiments revealed that dense mineralized tissue was formed in subcutaneous sites and the 8- week plants shared similar micro-CT characteristics with native bone. The neo tissue demonstrated histological markers for both bone and cartilage, indicating that the bone formation pathway in constructs was akin to endochondral ossification, with the residues of PLGA having an effect on the neo tissue organization and formation. These results indicate that cell-sheet approaches in combination with custom-shaped scaffolds have potential in producing bone tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, cell sheets comprising multilayered porcine bone marrow stromal cells (BMSC) were assembled with fully interconnected scaffolds made from medical-grade polycaprolactone–calcium phosphate (mPCL–CaP), for the engineering of structural and functional bone grafts. The BMSC sheets were harvested from culture flasks and wrapped around pre-seeded composite scaffolds. The layered cell sheets integrated well with the scaffold/cell construct and remained viable, with mineralized nodules visible both inside and outside the scaffold for up to 8 weeks culture. Cells within the constructs underwent classical in vitro osteogenic differentiation with the associated elevation of alkaline phosphatase activity and bone-related protein expression. In vivo, two sets of cell-sheet-scaffold/cell constructs were transplanted under the skin of nude rats. The first set of constructs (554mm3) were assembled with BMSC sheets and cultured for 8 weeks before implantation. The second set of constructs (10104mm3) was implanted immediately after assembly with BMSC sheets, with no further in vitro culture. For both groups, neo cortical and well-vascularised cancellous bone were formed within the constructs with up to 40% bone volume. Histological and immunohistochemical examination revealed that neo bone tissue formed from the pool of seeded BMSC and the bone formation followed predominantly an endochondral pathway, with woven bone matrix subsequently maturing into fully mineralized compact bone; exhibiting the histological markers of native bone. These findings demonstrate that large bone tissues similar to native bone can be regenerated utilizing BMSC sheet techniques in conjunction with composite scaffolds whose structures are optimized from a mechanical, nutrient transport and vascularization perspective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Any biomaterial implanted within the human body is influenced by the interactions that take place between its surface and the surrounding biological milieu. These interactions are known to influence the tissue interface dynamic, and thus act to emphasize the need to study cell-surface interactions as part of any biomaterial design process. The work described here investigates the relationship between human osteoblast attachment, spreading and focal contact formation on selected surfaces using immunostaining and digital image processing for vinculin, a key focal adhesion component. Our observations show that a relationship exists between levels of cell attachment, the degree of vinculin-associated plaque formation and biocompatibility. It also suggests that cell adhesion is not indicative of how supportive a substrate is to cell spreading, and that cell spreading

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: This paper details an in-vitro study using human adipose tissue-derived precursor/stem cells (ADSCs) in three-dimensional (3D) tissue culture systems. ADSCs from 3 donors were seeded onto NaOH-treated medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffolds with two different matrix components; fibrin glue and lyophilized collagen. ADSCs within these scaffolds were then induced to differentiate along the osteogenic lineage for a 28-day period and various assays and imaging techniques were performed at Day 1, 7, 14, 21 and 28 to assess and compare the ADSC’s adhesion, viability, proliferation, metabolism and differentiation along the osteogenic lineage when cultured in the different scaffold/matrix systems. The ADSC cells were proliferative in both collagen and fibrin mPCL-TCP scaffold systems with a consistently higher cell number (by comparing DNA amounts) in the induced group over the non-induced groups for both scaffold systems. In response to osteogenic induction, these ADSCs expressed elevated osteocalcin, alkaline phosphatase and osteonectin levels. Cells were able to proliferate within the pores of the scaffolds and form dense cellular networks after 28 days of culture and induction. The successful cultivation of osteogenic by FDM process manufactured ADSCs within a 3D matrix comprising fibrin glue or collagen, immobilized within a robust synthetic scaffold is a promising technique which should enhance their potential usage in the regenerative medicine arena, such as bone tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During wound repair, the balance between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs) is crucial for the normal extra cellular matrix turnover. However, the over expression of several MMPs including MMP-1, 2, 3, 8, 9 and MMP-10, combined with abnormally high levels of activation or low expression of TIMPs, may contribute to excessive degradation of connective tissue and formation of chronic ulcers. There are many groups exploring strategies for promoting wound healing involving delivery of growth factors, cells, ECM components and small molecules. Our approach for improving the balance of MMPs is not to add anything more to the wound, but instead to neutralise the over-expressed MMPs using inhibitors tethered to a bandage-like hydrogel. Our in vitro experiments using designed synthetic pseudo peptide inhibitors have been demonstrated to inhibit MMP activity in standard solutions. These inhibitors have also been tethered to polyethylene glycol hydrogels using a facile reaction between the linker unit on the inhibitor and the gel. After tethering the inhibition of MMPs diminishes to some extent and we postulate that this arises due to poor diffusion of the MMPs into the gels. When the tethered inhibitors were tested against chronic wound fluid obtained against patients we observed over 40% inhibition in proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within chronic wounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of hypertrophic scars is a frequent medical outcome of wound repair and often requires further therapy with treatments such as Silicone Gel Sheets (SGS) or apoptosis-inducing agents, including bleomycin. Although widely used, knowledge regarding SGS and their mode of action is limited. Preliminary research has shown that small amounts of amphiphilic silicone present in SGS have the ability to move into skin during treatment. We demonstrate herein that a commercially available analogue of these amphiphilic siloxane species, the rake copolymer GP226, decreases collagen synthesis upon exposure to cultures of fibroblasts derived from hypertrophic scars (HSF). By size exclusion chromatography, GP226 was found to be a mixture of siloxane species, containing five fractions of different molecular weight. By studies of collagen production, cell viability and proliferation, it was revealed that a low molecular weight fraction (fraction IV) was the most active, reducing the number of viable cells present following treatment and thereby reducing collagen production as a result. Upon exposure of fraction IV to human keratinocytes, viability and proliferation was also significantly affected. HSF undergoing apoptosis after application of fraction IV were also detected via real-time microscopy and by using the TUNEL assay. Taken together, these data suggests that these amphiphilic siloxanes could be potential non-invasive substitutes to apoptotic-inducing chemical agents that are currently used as scar treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scaffolds manufactured from biological materials promise better clinical functionality, providing that characteristic features are preserved. Collagen, a prominent biopolymer, is used extensively for tissue engineering applications, because its signature biological and physico-chemical properties are retained in vitro preparations. We show here for the first time that the very properties that have established collagen as the leading natural biomaterial are lost when it is electro-spun into nano-fibres out of fluoroalcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol or 2,2,2-trifluoroethanol. We further identify the use of fluoroalcohols as the major culprit in the process. The resultant nano-scaffolds lack the unique ultra-structural axial periodicity that confirms quarter-staggered supramolecular assemblies and the capacity to generate second harmonic signals, representing the typical crystalline triple-helical structure. They were also characterised by low denaturation temperatures, similar to those obtained from gelatin preparations ( p > 0.05). Likewise, circular dichroism spectra revealed extensive denaturation of the electro-spun collagen. Using pepsin digestion in combination with quantitative SDS-PAGE, we corroborate great losses of up to 99% of triple-helical collagen. In conclusion, electro-spinning of collagen out of fluoroalcohols effectively denatures this biopolymer, and thus appears to defeat its purpose, namely to create biomimetic scaffolds emulating the collagen structure and function of the extracellular matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful wound repair and normal turnover of the extracellular matrix relies on a balance between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs). When over-expression of MMPs and abnormally high levels of activation or low expression of TIMPs are encountered, excessive degradation of connective tissue and the formation of chronic ulcers can occur. One strategy to rebalance MMPs and TIMPs is to use inhibitors. We have designed a synthetic pseudopeptide inhibitor with an amine linker group based on a known high-affinity peptidomimetic MMP inhibitor have demonstrated inhibition of MMP-1, -2, -3 and -9 activity in standard solutions. The inhibitor was also tethered to a polyethylene glycol hydrogel using a facile reaction between the linker unit on the inhibitor and the hydrogel precursors. After tethering, we observed inhibition of the MMPs although there was an increase in the IC50s which was attributed to poor diffusion of the MMPs into the hydrogels, reduced activity of the tethered inhibitor or incomplete incorporation of the inhibitor into the hydrogels. When the tethered inhibitors were tested against chronic wound fluid we observed significant inhibition in proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within chronic wounds.