984 resultados para BH3 Interacting Domain Death Agonist Protein
Resumo:
PDZ-binding motifs are found in the C-terminal tails of numerous integral membrane proteins where they mediate specific protein-protein interactions by binding to PDZ-containing proteins. Conventional yeast two-hybrid screens have been used to probe protein-protein interactions of these soluble C termini. However, to date no in vivo technology has been available to study interactions between the full-length integral membrane proteins and their cognate PDZ-interacting partners. We previously developed a split-ubiquitin membrane yeast two-hybrid (MYTH) system to test interactions between such integral membrane proteins by using a transcriptional output based on cleavage of a transcription factor from the C terminus of membrane-inserted baits. Here we modified MYTH to permit detection of C-terminal PDZ domain interactions by redirecting the transcription factor moiety from the C to the N terminus of a given integral membrane protein thus liberating their native C termini. We successfully applied this "MYTH 2.0" system to five different mammalian full-length renal transporters and identified novel PDZ domain-containing partners of the phosphate (NaPi-IIa) and sulfate (NaS1) transporters that would have otherwise not been detectable. Furthermore this assay was applied to locate the PDZ-binding domain on the NaS1 protein. We showed that the PDZ-binding domain for PDZK1 on NaS1 is upstream of its C terminus, whereas the two interacting proteins, NHERF-1 and NHERF-2, bind at a location closer to the N terminus of NaS1. Moreover NHERF-1 and NHERF-2 increased functional sulfate uptake in Xenopus oocytes when co-expressed with NaS1. Finally we used MYTH 2.0 to demonstrate that the NaPi-IIa transporter homodimerizes via protein-protein interactions within the lipid bilayer. In summary, our study establishes the MYTH 2.0 system as a novel tool for interactive proteomics studies of membrane protein complexes.
Resumo:
Poly(A)-binding protein (PABP) stimulates translation initiation by binding simultaneously to the mRNA poly(A) tail and eukaryotic translation initiation factor 4G (eIF4G). PABP activity is regulated by PABP-interacting (Paip) proteins. Paip1 binds PABP and stimulates translation by an unknown mechanism. Here, we describe the interaction between Paip1 and eIF3, which is direct, RNA independent, and mediated via the eIF3g (p44) subunit. Stimulation of translation by Paip1 in vivo was decreased upon deletion of the N-terminal sequence containing the eIF3-binding domain and upon silencing of PABP or several eIF3 subunits. We also show the formation of ternary complexes composed of Paip1-PABP-eIF4G and Paip1-eIF3-eIF4G. Taken together, these data demonstrate that the eIF3-Paip1 interaction promotes translation. We propose that eIF3-Paip1 stabilizes the interaction between PABP and eIF4G, which brings about the circularization of the mRNA.
Resumo:
Las cascadas de señalización mediadas por proteína quinasas activadas por mitógeno (MAP quinasas) son capaces de integrar y transducir señales ambientales en respuestas celulares. Entre estas señales se encuentran los PAMPs/MAMPs (Pathogen/Microbe-Associated Molecular Patterns), que son moléculas de patógenos o microorganismos, o los DAMPs (Damaged-Associated Molecular Patterns), que son moléculas derivadas de las plantas producidas en respuesta a daño celular. Tras el reconocimiento de los PAMPs/DAMPs por receptores de membrana denominados PRRs (Pattern Recognition Receptors), como los receptores con dominio quinasa (RLKs) o los receptores sin dominio quinasa (RLPs), se activan respuestas moleculares, incluidas cascadas de MAP quinasas, que regulan la puesta en marcha de la inmunidad activada por PAMPs (PTI). Esta Tesis describe la caracterización funcional de la MAP quinasa quinasa quinasa (MAP3K) YODA (YDA), que actúa como un regulador clave de la PTI en Arabidopsis. Se ha descrito previamente que YDA controla varios procesos de desarrollo, como la regulación del patrón estomático, la elongación del zigoto y la arquitectura floral. Hemos caracterizado un alelo mutante hipomórfico de YDA (elk2 o yda11) que presenta una elevada susceptibilidad a patógenos biótrofos y necrótrofos. Notablemente, plantas que expresan una forma constitutivamente activa de YDA (CA-YDA), con una deleción en el dominio N-terminal, presentan una resistencia de amplio espectro frente a diferentes tipos de patógenos, incluyendo hongos, oomicetos y bacterias, lo que indica que YDA juega un papel importante en la regulación de la resistencia de las plantas a patógenos. Nuestros datos indican que esta función es independiente de las respuestas inmunes mediadas por los receptores previamente caracterizados FLS2 y CERK1, que reconocen los PAMPs flg22 y quitina, respectivamente, y que están implicados en la resistencia de Arabidopsis frente a bacterias y hongos. Hemos demostrado que YDA controla la resistencia frente al hongo necrótrofo Plectosphaerella cucumerina y el patrón estomático mediante su interacción genética con la RLK ERECTA (ER), un PRR implicado en la regulación de estos procesos. Por el contrario, la interacción genética entre ER y YDA en la regulación de otros procesos de desarrollo es aditiva en lugar de epistática. Análisis genéticos indicaron que MPK3, una MAP quinasa que funciona aguas abajo de YDA en el desarrollo estomático, es un componente de la ruta de señalización mediada por YDA para la resistencia frente a P. cucumerina, lo que sugiere que el desarrollo de las plantas y la PTI comparten el módulo de transducción de MAP quinasas asociado a YDA. Nuestros experimentos han revelado que la resistencia mediada por YDA es independiente de las rutas de señalización reguladas por las hormonas de defensa ácido salicílico, ácido jasmónico, ácido abscísico o etileno, y también es independiente de la ruta de metabolitos secundarios derivados del triptófano, que están implicados en inmunidad vegetal. Además, hemos demostrado que respuestas asociadas a PTI, como el aumento en la concentración de calcio citoplásmico, la producción de especies reactivas de oxígeno, la fosforilación de MAP quinasas y la expresión de genes de defensa, no están afectadas en el mutante yda11. La expresión constitutiva de la proteína CA-YDA en plantas de Arabidopsis no provoca un aumento de las respuestas PTI, lo que sugiere la existencia de mecanismos de resistencia adicionales regulados por YDA que son diferentes de los regulados por FLS2 y CERK1. En línea con estos resultados, nuestros datos transcriptómicos revelan una sobre-representación en plantas CA-YDA de genes de defensa que codifican, por ejemplo, péptidos antimicrobianos o reguladores de muerte celular, o proteínas implicadas en la biogénesis de la pared celular, lo que sugiere una conexión potencial entre la composición e integridad de la pared celular y la resistencia de amplio espectro mediada por YDA. Además, análisis de fosfoproteómica indican la fosforilación diferencial de proteínas relacionadas con la pared celular en plantas CA-YDA en comparación con plantas silvestres. El posible papel de la ruta ER-YDA en la regulación de la integridad de la pared celular está apoyado por análisis bioquímicos y glicómicos de las paredes celulares de plantas er, yda11 y CA-YDA, que revelaron cambios significativos en la composición de la pared celular de estos genotipos en comparación con la de plantas silvestres. En resumen, nuestros datos indican que ER y YDA forman parte de una nueva ruta de inmunidad que regula la integridad de la pared celular y respuestas defensivas, confiriendo una resistencia de amplio espectro frente a patógenos. ABSTRACT Plant mitogen-activated protein kinase (MAPK) cascades transduce environmental signals and developmental cues into cellular responses. Among these signals are the pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) and the damage-associated molecular patterns (DAMPs). These PAMPs/DAMPs, upon recognition by plant pattern recognition receptors (PRRs), such as Receptor-Like Kinases (RLKs) and Receptor-Like Proteins (RLPs), activate molecular responses, including MAPK cascades, which regulate the onset of PAMP-triggered immunity (PTI). This Thesis describes the functional characterization of the MAPK kinase kinase (MAP3K) YODA (YDA) as a key regulator of Arabidopsis PTI. YDA has been previously described to control several developmental processes, such as stomatal patterning, zygote elongation and inflorescence architecture. We characterized a hypomorphic, non-embryo lethal mutant allele of YDA (elk2 or yda11) that was found to be highly susceptible to biotrophic and necrotrophic pathogens. Remarkably, plants expressing a constitutive active form of YDA (CA-YDA), with a deletion in the N-terminal domain, showed broad-spectrum resistance to different types of pathogens, including fungi, oomycetes and bacteria, indicating that YDA plays a relevant function in plant resistance to pathogens. Our data indicated that this function is independent of the immune responses regulated by the well characterized FLS2 and CERK1 RLKs, which are the PRRs recognizing flg22 and chitin PAMPs, respectively, and are required for Arabidopsis resistance to bacteria and fungi. We demonstrate that YDA controls resistance to the necrotrophic fungus Plectosphaerella cucumerina and stomatal patterning by genetically interacting with ERECTA (ER) RLK, a PRR involved in regulating these processes. In contrast, the genetic interaction between ER and YDA in the regulation of other ER-associated developmental processes was additive, rather than epistatic. Genetic analyses indicated that MPK3, a MAP kinase that functions downstream of YDA in stomatal development, also regulates plant resistance to P. cucumerina in a YDA-dependent manner, suggesting that the YDA-associated MAPK transduction module is shared in plant development and PTI. Our experiments revealed that YDA-mediated resistance was independent of signalling pathways regulated by defensive hormones like salicylic acid, jasmonic acid, abscisic acid or ethylene, and of the tryptophan-derived metabolites pathway, which are involved in plant immunity. In addition, we showed that PAMP-mediated PTI responses, such as the increase of cytoplasmic Ca2+ concentration, reactive oxygen species (ROS) burst, MAPK phosphorylation, and expression of defense-related genes are not impaired in the yda11 mutant. Furthermore, the expression of CA-YDA protein does not result in enhanced PTI responses, further suggesting the existence of additional mechanisms of resistance regulated by YDA that differ from those regulated by the PTI receptors FLS2 and CERK1. In line with these observations, our transcriptomic data revealed the over-representation in CA-YDA plants of defensive genes, such as those encoding antimicrobial peptides and cell death regulators, and genes encoding cell wall-related proteins, suggesting a potential link between plant cell wall composition and integrity and broad spectrum resistance mediated by YDA. In addition, phosphoproteomic data revealed an over-representation of genes encoding wall-related proteins in CA-YDA plants in comparison with wild-type plants. The putative role of the ER-YDA pathway in regulating cell wall integrity was further supported by biochemical and glycomics analyses of er, yda11 and CA-YDA cell walls, which revealed significant changes in the cell wall composition of these genotypes compared with that of wild-type plants. In summary, our data indicate that ER and YDA are components of a novel immune pathway that regulates cell wall integrity and defensive responses, which confer broad-spectrum resistance to pathogens.
Resumo:
We have identified a mammalian protein called GIPC (for GAIP interacting protein, C terminus), which has a central PDZ domain and a C-terminal acyl carrier protein (ACP) domain. The PDZ domain of GIPC specifically interacts with RGS-GAIP, a GTPase-activating protein (GAP) for Gαi subunits recently localized on clathrin-coated vesicles. Analysis of deletion mutants indicated that the PDZ domain of GIPC specifically interacts with the C terminus of GAIP (11 amino acids) in the yeast two-hybrid system and glutathione S-transferase (GST)-GIPC pull-down assays, but GIPC does not interact with other members of the RGS (regulators of G protein signaling) family tested. This finding is in keeping with the fact that the C terminus of GAIP is unique and possesses a modified C-terminal PDZ-binding motif (SEA). By immunoblotting of membrane fractions prepared from HeLa cells, we found that there are two pools of GIPC–a soluble or cytosolic pool (70%) and a membrane-associated pool (30%). By immunofluorescence, endogenous and GFP-tagged GIPC show both a diffuse and punctate cytoplasmic distribution in HeLa cells reflecting, respectively, the existence of soluble and membrane-associated pools. By immunoelectron microscopy the membrane pool of GIPC is associated with clusters of vesicles located near the plasma membrane. These data provide direct evidence that the C terminus of a RGS protein is involved in interactions specific for a given RGS protein and implicates GAIP in regulation of additional functions besides its GAP activity. The location of GIPC together with its binding to GAIP suggest that GAIP and GIPC may be components of a G protein-coupled signaling complex involved in the regulation of vesicular trafficking. The presence of an ACP domain suggests a putative function for GIPC in the acylation of vesicle-bound proteins.
Resumo:
Posttranslational modifications such as ubiquitination and phosphorylation play an important role in the regulation of cellular protein function. Homeodomain-interacting protein kinase 2 (HIPK2) is a member of the recently identified family of nuclear protein kinases that act as corepressors for homeodomain transcription factors. Here, we show that HIPK2 is regulated by a ubiquitin-like protein, SUMO-1. We demonstrate that HIPK2 localizes to nuclear speckles (dots) by means of a speckle-retention signal. This speckle-retention signal contains a domain that interacts with a mouse ubiquitin-like protein conjugating (E2) enzyme, mUBC9. In cultured cells, HIPK2 is covalently modified by SUMO-1, and the SUMO-1 modification of HIPK2 correlates with its localization to nuclear speckles (dots). Thus, our results provide firm evidence that the nuclear protein kinase HIPK2 can be covalently modified by SUMO-1, which directs its localization to nuclear speckles (dots).
Resumo:
The GTPase dynamin I and the inositol 5-phosphatase synaptojanin are nerve terminal proteins implicated in synaptic vesicle recycling. Both proteins contain COOH-terminal proline-rich domains that can interact with a variety of Src homology 3 (SH3) domains. A major physiological binding partner for dynamin I and synaptojanin in the nervous system is amphiphysin I, an SH3 domain-containing protein also concentrated in nerve terminals. We have used the proline-rich tail of synaptojanin to screen a rat brain library by the two-hybrid method to identify additional interacting partners of synaptojanin. Three related proteins containing SH3 domains that are closely related to the SH3 domains of Grb2 were isolated: SH3p4, SH3p8, and SH3p13. Further biochemical studies demonstrated that the SH3p4/8/13 proteins bind to both synaptojanin and dynamin I. The SH3p4/8/13 transcripts are differentially expressed in tissues: SH3p4 mRNA was detected only in brain, SH3p13 mRNA was present in brain and testis, and the SH3p8 transcript was detected at similar levels in multiple tissues. Members of the SH3p4/8/13 protein family were found to be concentrated in nerve terminals, and pools of synaptojanin and dynamin I were coprecipitated from brain extracts with antibodies recognizing SH3p4/8/13. These findings underscore the important role of SH3-mediated interactions in synaptic vesicle recycling.
Resumo:
Several classes of voltage-gated Ca2+ channels (VGCCs) are inhibited by G proteins activated by receptors for neurotransmitters and neuromodulatory peptides. Evidence has accumulated to indicate that for non-L-type Ca2+ channels the executing arm of the activated G protein is its βγ dimer (Gβγ). We report below the existence of two Gβγ-binding sites on the A-, B-, and E-type α1 subunits that form non-L-type Ca2+ channels. One, reported previously, is in loop 1 connecting transmembrane domains I and II. The second is located approximately in the middle of the ca. 600-aa-long C-terminal tails. Both Gβγ-binding regions also bind the Ca2+ channel β subunit (CCβ), which, when overexpressed, interferes with inhibition by activated G proteins. Replacement in α1E of loop 1 with that of the G protein-insensitive and Gβγ-binding-negative loop 1 of α1C did not abolish inhibition by G proteins, but the exchange of the α1E C terminus with that of α1C did. This and properties of α1E C-terminal truncations indicated that the Gβγ-binding site mediating the inhibition of Ca2+ channel activity is the one in the C terminus. Binding of Gβγ to this site was inhibited by an α1-binding domain of CCβ, thus providing an explanation for the functional antagonism existing between CCβ and G protein inhibition. The data do not support proposals that Gβγ inhibits α1 function by interacting with the site located in the loop I–II linker. These results define the molecular mechanism by which presynaptic G protein-coupled receptors inhibit neurotransmission.
Bruton’s tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein
Resumo:
Bruton’s tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1,4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway.
Resumo:
Genetic and biochemical studies have led to the identification of the Stat3-Interacting Protein StIP1. The preferential association of StIP1 with inactive (i.e., unphosphorylated) Stat3 suggests that it may contribute to the regulation of Stat3 activation. Consistent with this possibility, StIP1 also exhibits an affinity for members of the Janus kinase family. Overexpression of the Stat3-binding domain of StIP1 blocks Stat3 activation, nuclear translocation, and Stat3-dependent induction of a reporter gene. These studies indicate that StIP1 regulates the ligand-dependent activation of Stat3, potentially by serving as a scaffold protein that promotes the interaction between Janus kinases and their Stat3 substrate. The ability of StIP1 to associate with several additional members of the signal transducer and activator of transcription family suggests that StIP1 may serve a broader role in cytokine-signaling events.
Resumo:
We have determined the solution structure of the C-terminal quarter of human poly(A)-binding protein (hPABP). The protein fragment contains a protein domain, PABC [for poly(A)-binding protein C-terminal domain], which is also found associated with the HECT family of ubiquitin ligases. By using peptides derived from PABP interacting protein (Paip) 1, Paip2, and eRF3, we show that PABC functions as a peptide binding domain. We use chemical shift perturbation analysis to identify the peptide binding site in PABC and the major elements involved in peptide recognition. From comparative sequence analysis of PABC-binding peptides, we formulate a preliminary PABC consensus sequence and identify human ataxin-2, the protein responsible for type 2 spinocerebellar ataxia (SCA2), as a potential PABC ligand.
Resumo:
The poly(A)-binding protein (PABP) recognizes the 3′ mRNA poly(A) tail and plays an essential role in eukaryotic translation initiation and mRNA stabilization/degradation. PABP is a modular protein, with four N-terminal RNA-binding domains and an extensive C terminus. The C-terminal region of PABP is essential for normal growth in yeast and has been implicated in mediating PABP homo-oligomerization and protein–protein interactions. A small, proteolytically stable, highly conserved domain has been identified within this C-terminal segment. Remarkably, this domain is also present in the hyperplastic discs protein (HYD) family of ubiquitin ligases. To better understand the function of this conserved region, an x-ray structure of the PABP-like segment of the human HYD protein has been determined at 1.04-Å resolution. The conserved domain adopts a novel fold resembling a right-handed supercoil of four α-helices. Sequence profile searches and comparative protein structure modeling identified a small ORF from the Arabidopsis thaliana genome that encodes a structurally similar but distantly related PABP/HYD domain. Phylogenetic analysis of the experimentally determined (HYD) and homology modeled (PABP) protein surfaces revealed a conserved feature that may be responsible for binding to a PABP interacting protein, Paip1, and other shared interaction partners.
Resumo:
The plant-intracellular interaction of the avirulence protein AvrPto of Pseudomonas syringae pathovar tomato, the agent of bacterial speck disease, and the corresponding tomato resistance protein Pto triggers responses leading to disease resistance. Pto, a serine/threonine protein kinase, also interacts with a putative downstream kinase, Pto-interactor 1, as well as with members of a family of transcription factors Pto-interactors 4, 5, and 6. These proteins are likely involved, respectively, in a phosphorylation cascade resulting in hypersensitive cell death, and in defense gene activation. The mechanism by which the interaction of AvrPto and Pto initiates defense response signaling is not known. To pursue the hypothesis that tertiary interactions are involved, we modified the yeast two-hybrid protein interaction trap and conducted a search for tomato proteins that interact with Pto only in the presence of AvrPto. Five classes of AvrPto-dependent Pto interactors were isolated, and their interaction specificity confirmed. Also, to shed light on a recently demonstrated virulence activity of AvrPto, we conducted a standard two-hybrid screen for tomato proteins in addition to Pto that interact with AvrPto: i.e., potential virulence targets or modifiers of AvrPto. By constructing an N-terminal rather than a C-terminal fusion of AvrPto to the LexA DNA binding domain, we were able to overcome autoactivation by AvrPto and identify four classes of specific AvrPto-interacting proteins.
Resumo:
The inhibitor of apoptosis (IAP) family of anti-apoptotic proteins regulate programmed cell death and/or apoptosis. One such protein, X-linked IAP (XIAP), inhibits the activity of the cell death proteases, caspase-3, -7, and -9. In this study, using constitutively active mutants of caspase-3, we found that XIAP promotes the degradation of active-form caspase-3, but not procaspase-3, in living cells. The XIAP mutants, which cannot interact with caspase-3, had little or no activity of promoting the degradation of caspase-3. RING finger mutants of XIAP also could not promote the degradation of caspase-3. A proteasome inhibitor suppressed the degradation of caspase-3 by XIAP, suggesting the involvement of a ubiquitin-proteasome pathway in the degradation. An in vitro ubiquitination assay revealed that XIAP acts as a ubiquitin-protein ligase for caspase-3. Caspase-3 was ubiquitinated in the presence of XIAP in living cells. Both the association of XIAP with caspase-3 and the RING finger domain of XIAP were essential for ubiquitination. Finally, the RING finger mutants of XIAP were less effective than wild-type XIAP at preventing apoptosis induced by overexpression of either active-form caspase-3 or Fas. These results demonstrate that the ubiquitin-protein ligase activity of XIAP promotes the degradation of caspase-3, which enhances its anti-apoptotic effect.
Resumo:
The absence of the fragile X mental retardation protein (FMRP), encoded by the FMR1 gene, is responsible for pathologic manifestations in the Fragile X Syndrome, the most frequent cause of inherited mental retardation. FMRP is an RNA-binding protein associated with polysomes as part of a messenger ribonucleoprotein (mRNP) complex. Although its function is poorly understood, various observations suggest a role in local protein translation at neuronal dendrites and in dendritic spine maturation. We present here the identification of CYFIP1/2 (Cytoplasmic FMRP Interacting Proteins) as FMRP interactors. CYFIP1/2 share 88% amino acid sequence identity and represent the two members in humans of a highly conserved protein family. Remarkably, whereas CYFIP2 also interacts with the FMRP-related proteins FXR1P/2P, CYFIP1 interacts exclusively with FMRP. FMRP–CYFIP interaction involves the domain of FMRP also mediating homo- and heteromerization, thus suggesting a competition between interaction among the FXR proteins and interaction with CYFIP. CYFIP1/2 are proteins of unknown function, but CYFIP1 has recently been shown to interact with the small GTPase Rac1, which is implicated in development and maintenance of neuronal structures. Consistent with FMRP and Rac1 localization in dendritic fine structures, CYFIP1/2 are present in synaptosomal extracts.
Resumo:
LIM domain-containing transcription factors, including the LIM-only rhombotins and LIM-homeodomain proteins, are crucial for cell fate determination of erythroid and neuronal lineages. The zinc-binding LIM domains mediate protein-protein interactions, and interactions between nuclear LIM proteins and transcription factors with restricted expression patterns have been demonstrated. We have isolated a novel protein, nuclear LIM interactor (NLI), that specifically associates with a single LIM domain in all nuclear LIM proteins tested. NLI is expressed in the nuclei of diverse neuronal cell types and is coexpressed with a target interactor islet-1 (Isl1) during the initial stages of motor neuron differentiation, suggesting the mutual involvement of these proteins in the differentiation process. The broad range of interactions between NLI and LIM-containing transcription factors suggests the utilization of a common mechanism to impart unique cell fate instructions.