216 resultados para BCG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An epidemiological survey for the monitoring of bovine tuberculosis transmission was carried out in western Liguria, a region in northern Italy. Fifteen Mycobacterium bovis strains were isolated from 63 wild boar samples (62 from mandibular lymph nodes and 1 from a liver specimen). Sixteen mediastinal lymph nodes of 16 head of cattle were collected, and 15 Mycobacterium bovis strains were subsequently cultured. All M. bovisstrains isolated from cattle and wild boars were genotyped by spoligotyping and by restriction fragment length polymorphism (RFLP) analysis with the IS6110 and IS1081 probes. All M. bovis strains showed the typical spoligotype characterized by the absence of the 39 to 43 spacers in comparison with the number in M. tuberculosis. A total of nine different clusters were identified by spoligotyping. The largest cluster included 9 strains isolated from wild boars and 11 strains isolated from cattle, thus confirming the possibility of transmission between the two animal species. Fingerprinting by RFLP analysis with the IS6110 probe showed an identical single-band pattern for 29 of 30 strains analyzed, and only 1 strain presented a five-band pattern. The use of IS1081 as a second probe was useful for differentiation of M. bovis from M. bovis BCG but not for differentiation among M. bovis strains, which presented the same undifferentiated genomic profile. In relation to the epidemiological investigation, we hypothesized that the feeding in pastures contaminated by cattle discharges could represent the most probable route of transmission of M. bovis between the two animal species. In conclusion, our results confirmed the higher discriminatory power of spoligotyping in relation to that of RFLP analysis for the differentiation of M. bovis genomic profiles. Our data showed the presence of a common M. bovis genotype in both cattle and wild boars, confirming the possible interspecies transmission of M. bovis.
Resumo:
Wildlife reservoirs of Mycobacterium bovis represent serious obstacles to the eradication of tuberculosis in domestic livestock. In Michigan, USA tuberculous white-tailed deer transmit M. bovis to cattle. One approach in dealing with this wildlife reservoir is to vaccinate deer in order to interrupt the cycle of deer to deer and deer to cattle transmission. Thirty-one white-tailed deer were assigned to one of three groups; 2 SC doses of 107 CFU of M. bovis BCG (n = 11); 1 SC dose of 107 CFU of M. bovis BCG (n = 10); or unvaccinated deer (n = 10). After vaccination, deer were inoculated intratonsilarly with 300 CFU of virulent M. bovis. Gross lesion severity scores of the medial retropharyngeal lymph node were significantly reduced in deer receiving 2 doses of BCG compared to unvaccinated deer. Vaccinated deer had fewer lymph node granulomas than unvaccinated deer, and most notably, fewer late stage granulomas characterized by coalescent caseonecrotic granulomas containing numerous acid-fast bacilli. BCG was isolated from 7/21 vaccinated deer as long as 249 days after vaccination. In one case BCG was transmitted from a vaccinated deer to an unvaccinated deer. In white-tailed deer BCG provides measurable protection against challenge with virulent M. bovis. However, persistence of vaccine within tissues as well as shedding of BCG from vaccinates remain areas for further investigation.
Resumo:
We investigated the efficacy of oral and parenteral Mycobacterium bovis bacille Calmette-Guerin Danish strain 1331 (BCG) in its ability to protect white-tailed deer (Odocoileus virginianus) against disease caused by M. bovis infection. Twenty-two white-tailed deer were divided into four groups. One group (n=5) received 109 colony-forming units (cfu) BCG via a lipid-formulated oral bait; one group (n=5) received 109 cfu BCG in culture directly to the oropharynx, one group (n=6) was vaccinated with 106 cfu BCG subcutaneously, and one group served as a control and received culture media directly to the oropharynx (n=6). All animals were challenged 3 mo after vaccination. Five months postchallenge the animals were examined for lesions. Results indicate that both oral forms of BCG and parenterally administerd BCG offered significant protection against M. bovis challenge as compared to controls. This study suggests that oral BCG vaccination may be a feasible means of controlling bovine tuberculosis in wild white-tailed deer populations.
Resumo:
Central nervous system (CNS) tuberculosis (TB) is the most severe form of TB, characterized morphologically by brain granulomas and tuberculous meningitis (TBM). Experimental strategies for the study of the host-pathogen interaction through the analysis of granulomas and its intrinsic molecular mechanisms could provide new insights into the neuropathology of TB. To verify whether cerebellar mycobacterial infection induces the main features of the disease in human CNS and better understand the physiological mechanisms underlying the disease, we injected bacillus Calmette-Guerin (BCG) into the mouse cerebellum. BCG-induced CNS-TB is characterized by the formation of granulomas and TBM, a build up of bacterial loads in these lesions, and microglial recruitment into the lesion sites. In addition, there is an enhanced expression of signaling molecules such as nuclear factor-kappa B (NF-kappa B) and there is a presence of inducible nitric oxide synthase (iNOS) in the lesions and surrounding areas. This murine model of cerebellar CNS-TB was characterized by cellular and biochemical immune responses typically found in the human disease. This model could expand our knowledge about granulomas in TB infection of the cerebellum, and help characterize the physiological mechanisms involved with the progression of this serious illness that is responsible for killing millions people every year. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: This study aims to evaluate the production of interferon-gamma and interleukin-10 by stimulated peripheral blood mononuclear cells isolated from patients with supraglottic laryngeal cancer before and after surgical treatment. METHODS: Fourteen patients with advanced supraglottic laryngeal cancer were studied. Cultures of peripheral blood mononuclear cells isolated during the preoperative and late postoperative periods were stimulated with concanavalin A and Bacille Calmette-Guerin, and the supernatant concentrations of interferon-gamma and interleukin-10 were measured. RESULTS: For non-stimulated cultures, the interferon-gamma levels produced by the preoperative period and the late postoperative period cultures were lower than the levels produced by the control group cultures. The interferon-gamma levels after stimulation with concanavalin A were higher in the late postoperative period cultures than in the preoperative evaluation cultures. Stimulation with Bacille Calmette-Guerin led to the production of similar levels of interferon-gamma and interleukin-10 by all cultures; thus, stimulation increased the levels of interferon-gamma produced by both the preoperative and postoperative cultures relative to the levels produced by the corresponding unstimulated cultures. CONCLUSION: Patients with advanced supraglottic laryngeal cancer exhibit an in vitro deficiency in interferongamma secretion by mononuclear cells. Stimulated cells seem to recover this function during the postoperative period.
Resumo:
CD4(+) Foxp3(+) regulatory T cells inhibit the production of interferon-?, which is the major mediator of protection against Mycobacterium tuberculosis infection. In this study, we evaluated whether the protection conferred by three different vaccines against tuberculosis was associated with the number of spleen and lung regulatory T cells. We observed that after homologous immunization with the 65 000 molecular weight heat-shock protein (hsp 65) DNA vaccine, there was a significantly higher number of spleen CD4(+) Foxp3(+) cells compared with non-immunized mice. Heterologous immunization using bacillus Calmette Guerin (BCG) to prime and DNA-hsp 65 to boost (BCG/DNA-hsp 65) or BCG to prime and culture filtrate proteins (CFP)-CpG to boost (BCG/CFP-CpG) induced a significantly higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells compared with non-immunized mice. In addition, the protection conferred by either the BCG/DNA-hsp 65 or the BCG/CFP-CpG vaccines was significant compared with the DNA-hsp 65 vaccine. Despite the higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells found in BCG/DNA-hsp 65-immunized or BCG/CFP-CpG-immunized mice, the lungs of both groups of mice were better preserved than those of DNA-hsp 65-immunized mice. These results confirm the protective efficacy of BCG/DNA-hsp 65 and BCG/CFP-CpG heterologous prime-boost vaccines and the DNA-hsp 65 homologous vaccine. Additionally, the prime-boost regimens assayed here represent a promising strategy for the development of new vaccines to protect against tuberculosis because they probably induce a proper ratio of CD4(+) and regulatory (CD4(+) Foxp3(+)) cells during the immunization regimen. In this study, this ratio was associated with a reduced number of regulatory cells and no injury to the lungs.
Resumo:
We investigated the effects of viable, extended freeze-drying (EFD) or heat-killed (HK) Mycobacterium bovis bacillus CalmetteGuerin (BCG) in respiratory burst activity, gene expression of CYBB and NCF1 encoding components of the human phagocyte nicotinamide adenine dinucleotide (NADPH) oxidase, TLR2 expression, and in IL-10 and TNF-a cytokine production by human peripheral blood mononuclear cells (PBMCs). Viable BCG significantly inhibited TLR2 and CYBB gene expression, as well as superoxide release by human PBMC. All BCG stimuli augmented IL-10 release, but only HK BCG or viable BCG increased TNF-a release by PBMCs. Our studies show that viable BCG can impair the NADPH oxidase system activation and the TLR2 route in human PBMCs. As well, different BCG preparations can distinctly influence cytokine production by human PBMCs.
Resumo:
We report the discovery of 12 new fossil groups (FGs) of galaxies, systems dominated by a single giant elliptical galaxy and cluster-scale gravitational potential, but lacking the population of bright galaxies typically seen in galaxy clusters. These FGs, selected from the maxBCG optical cluster catalog, were detected in snapshot observations with the Chandra X-ray Observatory. We detail the highly successful selection method, with an 80% success rate in identifying 12 FGs from our target sample of 15 candidates. For 11 of the systems, we determine the X-ray luminosity, temperature, and hydrostatic mass, which do not deviate significantly from expectations for normal systems, spanning a range typical of rich groups and poor clusters of galaxies. A small number of detected FGs are morphologically irregular, possibly due to past mergers, interaction of the intra-group medium with a central active galactic nucleus (AGN), or superposition of multiple massive halos. Two-thirds of the X-ray-detected FGs exhibit X-ray emission associated with the central brightest cluster galaxy (BCG), although we are unable to distinguish between AGN and extended thermal galaxy emission using the current data. This sample representing a large increase in the number of known FGs, will be invaluable for future planned observations to determine FG temperature, gas density, metal abundance, and mass distributions, and to compare to normal (non-fossil) systems. Finally, the presence of a population of galaxy-poor systems may bias mass function determinations that measure richness from galaxy counts. When used to constrain power spectrum normalization and Omega(m), these biased mass functions may in turn bias these results.
Resumo:
Abstract Background Assuming a higher risk of latent tuberculosis (TB) infection in the population of Rio de Janeiro, Brazil, in October of 1998 the TB Control Program of Clementino Fraga Filho Hospital (CFFH) routinely started to recommend a two-step tuberculin skin test (TST) in contacts of pulmonary TB cases in order to distinguish a boosting reaction due to a recall of delayed hypersensitivity previously established by infection with Mycobacterium tuberculosis (M.tb) or BCG vaccination from a tuberculin conversion. The aim of this study was to assess the prevalence of boosted tuberculin skin tests among contacts of individuals with active pulmonary tuberculosis (TB). Methods Retrospective cohort of TB contacts ≥ 12 years old who were evaluated between October 1st, 1998 and October 31st 2001. Contacts with an initial TST ≤ 4 mm were considered negative and had a second TST applied after 7–14 days. Boosting reaction was defined as a second TST ≥ 10 mm with an increase in induration ≥ 6 mm related to the first TST. All contacts with either a positive initial or repeat TST had a chest x-ray to rule out active TB disease, and initially positive contacts were offered isoniazid preventive therapy. Contacts that boosted did not receive treatment for latent TB infection and were followed for 24 months to monitor the development of TB. Statistical analysis of dichotomous variables was performed using Chi-square test. Differences were considered significant at a p < 0.05. Results Fifty four percent (572/1060) of contacts had an initial negative TST and 79% of them (455/572) had a second TST. Boosting was identified in 6% (28/455). The mean age of contacts with a boosting reaction was 42.3 ± 21.1 and with no boosting was 28.7 ± 21.7 (p = 0.01). Fifty percent (14/28) of individuals whose test boosted met criteria for TST conversion on the second TST (increase in induration ≥ 10 mm). None of the 28 contacts whose reaction boosted developed TB disease within two years following the TST. Conclusion The low number of contacts with boosting and the difficulty in distinguishing boosting from TST conversion in the second TST suggests that the strategy of two-step TST testing among contacts of active TB cases may not be useful. However, this conclusion must be taken with caution because of the small number of subjects followed.
Resumo:
Abstract Background Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated. Methods Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA. Results This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life. Conclusion These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.
Resumo:
The great challenges for researchers working in the field of vaccinology are optimizing DNA vaccines for use in humans or large animals and creating effective single-dose vaccines using appropriated controlled delivery systems. Plasmid DNA encoding the heat-shock protein 65 (hsp65) (DNAhsp65) has been shown to induce protective and therapeutic immune responses in a murine model of tuberculosis (TB). Despite the success of naked DNAhsp65-based vaccine to protect mice against TB, it requires multiple doses of high amounts of DNA for effective immunization. In order to optimize this DNA vaccine and simplify the vaccination schedule, we coencapsulated DNAhsp65 and the adjuvant trehalose dimycolate (TDM) into biodegradable poly (DL-lactide-co-glycolide) (PLGA) microspheres for a single dose administration. Moreover, a single-shot prime-boost vaccine formulation based on a mixture of two different PLGA microspheres, presenting faster and slower release of, respectively, DNAhsp65 and the recombinant hsp65 protein was also developed. These formulations were tested in mice as well as in guinea pigs by comparison with the efficacy and toxicity induced by the naked DNA preparation or BCG. The single-shot prime-boost formulation clearly presented good efficacy and diminished lung pathology in both mice and guinea pigs.