984 resultados para Axial flow compressors.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a computer code aimed at solving the equations of three dimensional viscous compressible flow in turbomachine geometries. The code is applied to the study of the flowfield in a transonic axial compressor rotor at design speed at both maximum flow and towards stall. The predicted flowfield is compared with the laser measurements and the performance of the code discussed. In addition the discussion highlights the change in the predicted endwall and tip clearance flows as the rotor operating point is moved towards stall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an experimental investigation of tip clearance flow in a radial inflow turbine. Flow visualization and static pressure measurements were performed. These were combined with hot-wire traverses into the tip gap. The experimental data indicates that the tip clearance flow in a radial turbine can be divided into three regions. The first region is located at the rotor inlet, where the influence of relative casing motion dominates the flow over the tip. The second region is located towards midchord, where the effect of relative casing motion is weakened. Finally a third region exists in the exducer, where the effect of relative casing motion becomes small and the leakage flow resembles the tip flow behaviour in an axial turbine. Integration of the velocity profiles showed that there is little tip leakage in the first part of the rotor because of the effect of scraping. It was found that the bulk of tip leakage flow in a radial turbine passes through the exducer. The mass flow rate, measured at four chordwise positions, was compared with a standard axial turbine tip leakage model. The result revealed the need for a model suited to radial turbines. The hot-wire measurements also indicated a higher tip gap loss in the exducer of the radial turbine. This explains why the stage efficiency of a radial inflow turbine is more affected by increasing the radial clearance than by increasing the axial clearance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes both the migration and dissipation of flow phenomena downstream of a transonic high-pressure turbine stage. The geometry of the HP stage exit duct considered is a swan-necked diffuser similar to those likely to be used in future engine designs. The paper contains results both from an experimental programme in a turbine test facility and from numerical predictions. Experimental data was acquired using three fast-response aerodynamic probes capable of measuring Mach number, whirl angle, pitch angle, total pressure and static pressure. The probes were used to make time-resolved area traverses at two axial locations downstream of the rotor trailing edge. A 3D time-unsteady viscous Navier-Stokes solver was used for the numerical predictions. The unsteady exit flow from a turbine stage is formed from rotordependent phenomena (such as the rotor wake, the rotor trailing edge recompression shock, the tip-leakage flow and the hub secondary flow) and vane-rotor interaction dependant phenomena. This paper describes the time-resolved behaviour and three-dimensional migration paths of both of these phenomena as they convect downstream. It is shown that the inlet flow to a downstream vane is dominated by two corotating vortices, the first caused by the rotor tip-leakage flow and the second by the rotor hub secondary flow. At the inlet plane of the downstream vane the wake is extremely weak and the radial pressure gradient is shown to have caused the majority of the high loss wake fluid to be located between the mid-height of the passage and the casing wall. The structure of the flow indicates that between a high pressure stage and a downstream vane simple two-dimensional blade row interaction does not occur. The results presented in this paper indicate that the presence of an upstream stage is likely to significantly alter the structure of the secondary flow within a downstream vane. The paper also shows that vane-rotor interaction within the upstream stage causes a 10° circumferential variation in the inlet flow angle of the 2nd stage vane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multimode sound radiation from hard-walled semi-infinite ducts with uniform subsonic flow is investigated theoretically. An analytic expression, valid in the high frequency limit, is derived for the multimode directivity function in the forward arc for a general family of mode distribution functions. The multimode directivity depends on the amplitude and directivity function of each individual mode. The amplitude of each mode is expressed as a function of cut-off ratio for a uniform distribution of incoherent monopoles, a uniform distribution of incoherent axial dipoles and for equal power per mode. The modes' directivity functions are obtained analytically by applying a Lorentz transformation to the zero flow solution. The analytic formula for the multimode directivity with flow is derived assuming total transmission of power at the open-end of the duct. This formula is compared to the exact numerical result for an unflanged duct, computed utilizing a Wiener-Hopf solution. The agreement is shown to be excellent. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of a fluid in a vertical tube, subjected to an oscillatory pressure gradient, is studied experimentally for both a Newtonian and a viscoelastic shear-thinning fluid. Particle image velocimetry is used to determine the two-dimensional velocity fields in the vertical plane of the tube axis, in a range of driving amplitudes from 0.8 to 2.5 mm and of driving frequencies from 2.0 to 11.5 Hz. The Newtonian fluid exhibits a laminar flow regime, independent of the axial position, in the whole range of drivings. For the complex fluid, instead, the parallel shear flow regime exhibited at low amplitudes [Torralba, Phys. Rev. E 72, 016308 (2005)] becomes unstable at higher drivings against the formation of symmetric vortices, equally spaced along the tube. At even higher drivings the vortex structure itself becomes unstable, and complex nonsymmetric structures develop. Given that inertial effects remain negligible even at the hardest drivings (Re < 10(-1)), it is the complex rheology of the fluid that is responsible for the instabilities observed. The system studied represents an interesting example of the development of shear-induced instabilities in nonlinear complex fluids in purely parallel shear flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a `spike', and the second with a longer lengthscale disturbance known as a `modal oscillation'. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By far the greater part of our understanding about stall and surge in axial compressors comes from work on low-speed laboratory machines. As a general rule, these machines do not model the compressibility effects present in high-speed compressors and therefore doubt has always existed about the application of low-speed results to high-speed machines. In recent years interest in active control has led to a number of studies of compressor stability in engine type compressors. This paper presents new data from an eight-stage fixed geometry engine compressor and compares this with low-speed laboratory data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At low mass flow rates axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past - primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focussed on the level of irregularity in the blade passing signature in the rotor tip region. In general, this irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of the flow irregularity, but little effort has been made to characterise the irregularity, or to understand its underlying causes. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity which accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether this irregularity observed in the pre-stall flow field is due to random turbulence, or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity will not be viable in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. Copyright © 2011 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operating range of an axial compressor is often restricted by a safety imposed stall margin. One possible way of regaining operating range is with the application of casing treatment. Of particular interest here is the type of casing treatment which extracts air from a high pressure location in the compressor and re-injects it through discrete loops into the rotor tip region. Existing re-circulation systems have the disadvantage of reducing compressor efficiency at design conditions because worked flow is unnecessarily re-circulated at these operating conditions. Re-circulation is really only needed near stall. This paper proposes a self-regulating casing treatment in which the re-circulated flow is minimized at compressor design conditions and maximized near stall. The self-regulating capability is achieved by taking advantage of changes which occur in the tip clearance velocity and pressure fields as the compressor is throttled toward stall. In the proof-of-concept work reported here, flow is extracted from the high pressure region over the rotor tips and re-injected just upstream of the same blade row. Parametric studies are reported in which the flow extraction and re-injection ports are optimized for location, shape and orientation. The optimized design is shown to compare favorably with a circumferential groove tested in the same compressor. The relationship between stall inception type and casing treatment effectiveness is also investigated. The self-regulating aspect of the new design works well: stall margin improvements from 2.2 to 6.0% are achieved for just 0.25% total air re-circulated near stall and half that near design conditions. The self-regulating capability is achieved by the selective location and orientation of the extraction hole; a simple model is discussed which predicts the optimum axial location. Copyright © 2011 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At low mass flow rates, axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past---primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focused on the level of irregularity in the blade passing signature in the rotor tip region. In general, the irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of flow irregularity, but little effort has been made to characterize the irregularity itself, or to understand its underlying cause. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance size and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity that accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether the irregularity observed in the prestall flow field is due to random turbulence or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity would be difficult to implement in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. © 2013 American Society of Mechanical Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow field of a lab-scale model gas turbine swirl burner was characterised using particle imaging velocimetry (PIV) at atmospheric condition. The swirl burner consists of an axial swirler, a twin-fluid atomizer and a quartz tube as combustor wall. The main non-reacting swirling air flow without spray was compared to swirl flow with spray under unconfined and enclosed conditions. The introduction of liquid fuel spray changes the flow field of the main swirling air flow at the burner outlet where the radial velocity components are enhanced. Under reacting conditions, the enclosure generates a corner recirculation zone that intensifies the strength of the radial velocity. Comparison of the flow fields with a spray flame using diesel and palm biodiesel shows very similar flow fields. The flow field data can be used as validation target for swirl flame modeling. © (2013) Trans Tech Publications, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents flow field measurements for the turbulent stratified burner introduced in two previous publications in which high resolution scalar measurements were made by Sweeney et al. [1,2] for model validation. The flow fields of the series of premixed and stratified methane/air flames are investigated under turbulent, globally lean conditions (φg=0.75). Velocity data acquired with laser Doppler anemometry (LDA) and particle image velocimetry (PIV) are presented and discussed. Pairwise 2-component LDA measurements provide profiles of axial velocity, radial velocity, tangential velocity and corresponding fluctuating velocities. The LDA measurements of axial and tangential velocities enable the swirl number to be evaluated and the degree of swirl characterized. Power spectral density and autocorrelation functions derived from the LDA data acquired at 10kHz are optimized to calculate the integral time scales. Flow patterns are obtained using a 2-component PIV system operated at 7Hz. Velocity profiles and spatial correlations derived from the PIV and LDA measurements are shown to be in very good agreement, thus offering 3D mapping of the velocities. A strong correlation was observed between the shape of the recirculation zones above the central bluff body and the effects of heat release, stoichiometry and swirl. Detailed analyses of the LDA data further demonstrate that the flow behavior changes significantly with the levels of swirl and stratification, which combines the contributions of dilatation, recirculation and swirl. Key turbulence parameters are derived from the total velocity components, combining axial, radial and tangential velocities. © 2013 The Combustion Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents new experimental measurements of spike-type stall inception. The measurements were carried out in the single stage Deverson compressor at the Whittle Laboratory. The primary objective was to characterize the flow field in the tip clearance gap during stall inception using sufficient instrumentation to give high spatial and temporal resolution. Measurements were recorded using arrays of unsteady pressure transducers over the rotor tips and hot-wires in the tip gap. Pre-stall ensemble averaged velocity and pressure maps were obtained as well as pressure contours of the stall event. In order to study the transient inception process in greater detail, vector maps were built up from hundreds of stalling events using a triggering system based on the stalling event itself. The results show an embryonic disturbance starting within the blade passage and leading to the formation of a clear spike. The origins of the spike and its relation to the tip leakage vortex are discussed. It has also been shown that before stall the flow in the blade passage which is most likely to stall is generally more unsteady, from revolution to revolution, than the other passages in the annulus. Copyright © 2012 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with modelling the effects of swirling flow on turbomachinery noise. We develop an acoustic analogy to predict sound generation in a swirling and sheared base flow in an annular duct, including the presence of moving solid surfaces to account for blade rows. In so doing we have extended a number of classical earlier results, including Ffowcs Williams & Hawkings' equation in a medium at rest with moving surfaces, and Lilley's equation for a sheared but non-swirling jet. By rearranging the Navier-Stokes equations we find a single equation, in the form of a sixth-order differential operator acting on the fluctuating pressure field on the left-hand side and a series of volume and surface source terms on the right-hand side; the form of these source terms depends strongly on the presence of swirl and radial shear. The integral form of this equation is then derived, using the Green's function tailored to the base flow in the (rigid) duct. As is often the case in duct acoustics, it is then convenient to move into temporal, axial and azimuthal Fourier space, where the Green's function is computed numerically. This formulation can then be applied to a number of turbomachinery noise sources. For definiteness here we consider the noise produced downstream when a steady distortion flow is incident on the fan from upstream, and compare our results with those obtained using a simplistic but commonly used Doppler correction method. We show that in all but the simplest case the full inclusion of swirl within an acoustic analogy, as described in this paper, is required. © 2013 Cambridge University Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents new experimental measurements of spike-type stall inception. The measurements were carried out in the single stage Deverson compressor at the Whittle Laboratory. The primary objective was to characterize the flow field in the tip clearance gap during stall inception using sufficient instrumentation to give high spatial and temporal resolution. Measurements were recorded using arrays of unsteady pressure transducers over the rotor tips and hot-wires in the tip gap. Prestall ensemble averaged velocity and pressure maps were obtained as well as pressure contours of the stall event. In order to study the transient inception process in greater detail, vector maps were built up from hundreds of stalling events using a triggering system based on the stalling event itself. The results show an embryonic disturbance starting within the blade passage and leading to the formation of a clear spike. The origins of the spike and its relation to the tip leakage vortex are discussed. It has also been shown that before stall, the flow in the blade passage which is most likely to stall is generally more unsteady, from revolution to revolution, than the other passages in the annulus. © 2014 by ASME.