967 resultados para Average method
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PLT (Pb1-xLaxTiO3, in which x = 0, 0.13 and 0.27) powders were successfully synthesized using the polymeric precursor method, based on the Pechini method. The polymeric precursors were calcined at temperatures ranging from 350 to 500 degrees C for 4 h. X-ray diffraction (XRD) showed the evolution of the crystalline phase starting from the amorphous precursor. Thermogravimetric analyses (TG) and differential thermal analyses (DTA) of the powder precursors showed the influence of the pH on the elimination of organic material. PLT powders have a tendency to form agglomerates, what can be verified by comparing the values of the average particle sizes obtained by Brunauer-Emmett-Teller method, BET (D-BET) with the values of the average crystallite sizes obtained by XRD (D-XRD). (C) 2007 Elsevier Ltd. All fights reserved.
Resumo:
PtRu/C nanocatalysts were prepared by a microemulsion method using different values of water/surfactant molar ratio in order to get different particle sizes. Crystallite sizes and structural properties were determined by X-ray diffraction. Particle size and distribution were characterized by transmission electron microscopy and average composition was determined by energy dispersive X-ray analysis. Differential scanning calorimetry measurements indicated the presence of oxides in the as-prepared catalysts. The general electrochemical behavior was evaluated by cyclic voltammetry in 0.5 M sulfuric acid and the electrocatalytic activity towards the oxidation of methanol was studied in 0.5 M methanol acid solutions by potential sweeps and chronoamperometry. copyright The Electrochemical Society.
Resumo:
LaNiO3 thin films were deposited on SrLaAlO4 (1 0 0) and SrLaAlO4 (0 0 1) single crystal substrates by a chemical solution deposition method and heat-treated in oxygen atmosphere at 700° C in tube oven. Structural, morphological, and electrical properties of the LaNiO 3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and electrical resistivity as temperature function (Hall measurements). The X-ray diffraction data indicated good crystallinity and a structural preferential orientation. The LaNiO3 thin films have a very flat surface and no droplet was found on their surfaces. Samples of LaNiO3 grown onto (1 0 0) and (0 0 1) oriented SrLaAlO4 single crystal substrates reveled average grain size by AFM approximately 15-30 nm and 20-35 nm, respectively. Transport characteristics observed were clearly dependent upon the substrate orientation which exhibited a metal-to-insulator transition. The underlying mechanism is a result of competition between the mobility edge and the Fermi energy through the occupation of electron states which in turn is controlled by the disorder level induced by different growth surfaces. © 2013 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the work presented here, Ce0.97Cu0.03O2 nanoparticles were synthesized by a microwave-assisted hydrothermal method under different synthesis temperatures. The obtained nanoparticles were tested as catalysts in preferential oxidation of CO to obtain CO-free H2 (PROX reaction). The samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), electron paramagnetic resonance spectroscopy (EPR) and temperature-programmed reduction (TPR). X-ray diffraction measurements detected the presence of pure cubic CeO2 for all synthesized samples. TEM images of the Ce0.97Cu0.03O2 nanoparticles revealed that samples synthesized at 80°C are composed mainly of nanospheres with an average size of 20 nm. The formation of some nanorods with an average diameter of 8 nm and 40 nm in length, and the size reduction of the nanoparticles from 20 to approximately 15 nm is observed with increasing synthesis temperature. EPR spectra indicated that copper is found well dispersed in sample synthesized at 160°C, located predominant in surface sites of ceria. For samples synthesized at 80 and 120°C, the species are less dispersed than in the other one, resulting in the formation of Cu2+−Cu2+ dimmers at the surface of ceria. TPR profiles presented two reduction peaks, one below 400°C attributed to the reduction of different copper species and a second peak around 800°C attributed to the reduction of Ce4+→ Ce3+ species located in the volume of the nanoparticles. The peak related to the reduction of copper species shifts to lower temperatures with increasing synthesis temperature, i.e., the sample synthesized at 160°C is more easily reduced than the ones synthesized at 120 and 80°C. The nanoparticles showed active as catalysts for the CO-PROX reaction. The microwave-assisted method revealed efficient for the synthesis of Ce0.97Cu0.03O2 nanoparticles with copper species selective for the CO-PROX reaction, which reaches CO conversions up to 92% for the sample synthesized at 160°C.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes a new technique for preparing mitotic fish chromosomes using short-term in vitro treatment with colchicine. The results show that a large number of good quality metaphases (many suitable for chromosome banding) can be obtained by this technique, which requires an average of 1 h and 30 min for all steps. The procedure considerably reduces the time normally required for chromosome preparations in fish.
Resumo:
This paper has the objective of monitoring the biological activity of composting process of sewage sludge, sugarcane bagasse and ground coffee in a hermetic rotary reactor using the respirometric method in laboratory scale, in order to obtain parameters and system design for large scale projects. Another particularity of this study is the use of a hermetic reactor with gas purging cycles. Purging was performed when the percentage of oxygen reached less than 5%, thus eliminating the gaseous mixture (with elevated CO2 ratio) and the introduction of environmental air with around 21% of O2, successively until the compost was stabilized. The average purge intervals obtained were 29 h and 2 min with reactor rotation frequency of 15 min. The time of the compost stabilization was optimized in 60% if compared to the 90 days in the traditional method. The results obtained can be used to design the process in industrial scale using a simple O2 gas analyzer.
Resumo:
High intake of saturated fat from meats has been associated with cardiovascular disease, cancer, diabetes, and others diseases. In this paper, we are introducing a simple, high-throughput, and non-destructive low-resolution nuclear magnetic resonance method that has the potential to analyze the intramuscular fat content (IMF) in more than 1,000 beef portions per hour. The results can be used in nutritional fact labels, replacing the currently used average value. The method is based on longitudinal (T(1)) and transverse (T(2)) relaxation time information obtained by a continuous wave-free precession (CWFP) sequence. CWFP yields a higher correlation coefficient (r=0.9) than the conventional Carr-Purcell-Meiboom- Gill (CPMG) method (r=-0.25) for IMF in beef and is just as fast and a simpler pulse sequence than CPMG. The method can also be applied to other meat products.
Resumo:
Lychnophora salicifolia Mart., which occurs in the Brazilian Cerrado in the states of Bahia and Minas Gerais as well as in the southeast of the state of Goias, is the most widely distributed and also the most polymorphic species of the genus. This plant is popularly known to have anti-inflammatory and analgesic activities. In this work, we have studied the variation in terms of polar metabolites of ninety-three Lychnophora salicifolia Mart, specimens collected from different regions of the Brazilian Cerrado. Identification of the constituents of this mixture was carried out by analysis of the UV spectra and MS data after chromatographic separation. Twenty substances were identified, including chlorogenic acid derivatives, a flavonoid C-glucoside, and other sesquiterpenes. The analytical method was validated, and the reliability and credibility of the results was ensured for the purposes of this study. The concentration range required for analysis of content variability within the analyzed group of specimens was covered with appropriate values of limits of detection and quantitation, as well as satisfactory precision and recovery. A quantitative variability was observed among specimens collected from the same location, but on average they were similar from a chemical viewpoint. In relation to the study involving specimens from different locations, there were both qualitative and quantitative differences among plants collected from different regions of Brazil. Statistical analysis revealed that there is a correlation between geographical localization and polar metabolites profile for specimens collected from different locations. This is evidence that the pattern of metabolites concentration depends on the geographical distribution of the specimens. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved. (C) 2012 Elsevier B.V. All rights reserved.