994 resultados para Avena sativa L


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oats have received attention because of their nutritional characteristics, especially their high-quality content of β-glucan. The drying process reduces water content; therefore they can be preserved for long periods. However, high-temperature drying process may affect the physical, chemical, and functional properties of the grains. The objective of this study was to evaluate the effect of different drying temperatures on β-glucan quality in oat grains. Grains of oats (Avena sativa, L.), cultivar Albasul, harvested at harvest moisture content of 23% were submitted to stationary drying at air temperatures of 25, 50, 75, and 100 ºC until they reached 13% moisture content. The β-glucan content was determined in samples of oat grains and extraction was performed using water as solvent at 90 ºC. The β-glucan extract was evaluated for water holding capacity, water retention capacity, capacity of displacement, and gelation properties. Stationary of oat grains at air temperatures above 25 ºC decreased the water holding capacity, whereas the content of β-glucan and the water retention capacity of β-glucan extract was affected at temperatures above 50 ºC. Physical changes such as increased gelation capacity of the β-glucan extract occurred following drying at air temperature over 75 ºC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to changing cropping practices in perennial grass seed crops in western Oregon, USA, alternative rotation systems are being considered to reduce weed infestations. Information is generally lacking regarding the effects of alternative agronomic operations and herbicide inputs on soil weed seed bank composition during this transition. Six crop rotation systems were imposed in 1992 on a field that had historically produced monoculture perennial ryegrass (Lolium perenne L.) seeds. Each system plot was 20 x 30 m, arranged in a randomized complete block design, replicated four times. Twenty to thirty soil cores were sampled in June 1997 from each plot. The weed species composition of the cores was determined by successive greenhouse grow-out assays. In addition to seed density, heterogeneity indices for species evenness, richness, and diversity were determined. The most abundant species were Juncus bufonius L. and Poa annua L. Changes in seed bank composition were due to the different herbicides used for the rotation crop components. Compared to the other rotation systems, no-tillage, spring-planted wheat (Triticum aestivum L.) and oat (Avena sativa L.) reduced overall weed seed density and richness, but did not affect weed species evenness or diversity. When meadowfoam (Limnanthes alba Hartweg ex Benth.) succeeded wheat in rotation, weed species richness was unaffected, but evenness and diversity were reduced, compared to the other rotation systems. For meadowfoam in sequence after white clover (Trifolium repens L.), crop establishment method (no-tillage and conventional tillage) had no effect on weed seed species density, evenness, or diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was to evaluate crop yield and some characteristics and yield components of transgenic soybean cultivars sown after different winter cover crops in the first year under no tillage system. The experimental design was the completely randomized block with split plots and four replications. The main plots consisted of five winter cover crops, white oat (Avena sativa L.), forage turnip (Raphanus sativus L.), barley (Hordeum vulgare L.), wheat (Triticum aestivum L.) and ground pea (Pisum sativum L.) and an area under fallow (spontaneous vegetation). The subplots consisted of six soybean cultivars (BRS 243 RR, BRS 245 RR, BRS 247 RR, BRS 255 RR, BRS 256 RR and BRS 244 RR). Variance analysis for agronomic characteristics showed that soybean yield components were influenced by the interaction between winter crop and soybean cultivar. Thus, final population, number of nodes and pods per plant, nodes dry matter per plant, number of grains per pod and grain yield were affected significantly. When soybean nodulation was evaluated, the treatment with the area under fallow showed lower values. There was difference among winter crops for BRS 243 RR grain yield, white oat showed the highest values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant nutrition can positively influence quality of seeds by improving plant tolerance to adverse climate. In this context, silicon is currently considered a micronutrient and it is beneficial to plant growth, especially Poaceaes such as white oat and wheat, thereby improving physiological quality of seeds. This study had the objective of evaluating the effects of silicon leaf application on plant tillering, silicon levels and physiological quality of white oat and wheat seeds besides establishing correlations between them. Two experiments were carried out in winter with white oat and wheat. The experimental design was the completely randomized block with eight replications. Treatments consisted of foliar application of silicon (0.8% of soluble silicon, as stabilized orthosilicic acid) and a control (with no application). Silicon levels in leaves were determined at flowering whereas the number of plants and panicles/spikes per area was counted right before harvest. Seed quality was evaluated right after harvest through mass, germination and vigor tests. Data was submitted to variance analysis and means were compared by the Tukey test at a probability level of 5%. Person's linear correlation test was performed among silicon level in plants, tillering and seed quality data. Silicon leaf application increases root and total length of white oat seedlings as an effect of higher Si level in leaves. Silicon leaf application increases mass of wheat seeds without affecting germination or vigor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os fertilizantes silicatados tem sido cada vez mais usados na agricultura devido a inúmeros benefícios, tais como correção da acidez de solos tropicais e efeitos positivos no desenvolvimento de gramíneas. A disponibilidade de nutrientes e a nutrição de plantas desempenham papel importante na produção de sementes e podem influenciar a qualidade fisiológica de sementes de aveia-branca (Avena sativa L.). Avaliou-se a germinação de sementes e o desenvolvimento de plântulas de aveia-branca em função da adubação com silício e fósforo. O delineamento experimental foi inteiramente casualizado, em esquema fatorial 2 x 4, com seis repetições. Os tratamentos consistiram de 20 e 200 mg dm-3 de P2O5, aplicados na forma de superfosfato triplo, combinados com 0, 150, 300 e 450 mg dm-3 de Si na forma de silicato de potássio. O experimento foi realizado em casa de vegetação, conduzindo-se sete plantas por vaso, com capacidade para 15 L de terra. As panículas foram colhidas e debulhadas manualmente e, as sementes, armazenadas em sacos de papel em condições normais de ambiente. As sementes foram avaliadas quanto ao teor de água, massa de sementes, germinação, condutividade elétrica, comprimento e massa da matéria seca de plântulas. Sementes de aveia-branca com qualidade superior são produzidas com 20 mg dm-3 de P2O5, independente da dose de Si. Sementes com maior germinação e vigor são obtidas com 300 e 450 mg dm-3 de K2SiO3, respectivamente. Os comprimentos da raiz e total das plântulas foram inferiores nas doses de Si até 300 kg ha-1, porém a dose de fósforo somente afetou o desenvolvimento das plântulas de maneira distinta quando aplicada junto com a maior dose de silício.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fertilizer use in no-till systems must be aligned with a correct interpretation of soil chemical attributes and crop demands. The objectives of this work were evaluate the effects of pre-sowing application of ammonium sulfate (AS) and of cover crops on the yields and soil chemical attributes of no-till cotton (Gossypium hirsutum L. r. latifolium Hutch) over two harvesting years. The experiment was arranged in randomized complete block design, with the plots in strips, and the variables were three cover crops (Raphanus sativus L., Avena strigosa L. and Avena sativa L.) and four AS doses (0, 150, 300, and 450 kg ha-1) applied over millet dry biomass. The cotton in the experimental plots was manually harvested on April 25, 2007 and April 24, 2008. The soil samples were collected between cotton rows in all plots on May 5, 2007 and May 12, 2008, at depths of 0.0-0.05, 0.05-0.10, and 0.10-0.20 m for soil fertility analyses. The increasing doses of AS induced lower soil pH, and calcium (Ca) and magnesium (Mg) levels in the superficial soil layer, as well as higher exchangeable aluminum (Al) and sulfur (S) levels until a depth of 0.20 m. Seed cotton yields increased with increasing AS doses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integration of transgenic DNA into the plant genome was investigated in 13 transgenic oat (Avena sativa L.) lines produced using microprojectile bombardment with one or two cotransformed plasmids. In all transformation events, the transgenic DNA integrated into the plant genome consisted of intact transgene copies that were accompanied by multiple, rearranged, and/or truncated transgene fragments. All fragments of transgenic DNA cosegregated, indicating that they were integrated at single gene loci. Analysis of the structure of the transgenic loci indicated that the transgenic DNA was interspersed by the host genomic DNA. The number of insertions of transgenic DNA within the transgene loci varied from 2 to 12 among the 13 lines. Restriction endonucleases that do not cleave the introduced plasmids produced restriction fragments ranging from 3.6 to about 60 kb in length hybridizing to a probe comprising the introduced plasmids. Although the size of the interspersing host DNA within the transgene locus is unknown, the sizes of the transgene-hybridizing restriction fragments indicated that the entire transgene locus must be at least from 35–280 kb. The observation that all transgenic lines analyzed exhibited genomic interspersion of multiple clustered transgenes suggests a predominating integration mechanism. We propose that transgene integration at multiple clustered DNA replication forks could account for the observed interspersion of transgenic DNA with host genomic DNA within transgenic loci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barley (Hordeum vulgare L.) is a long-day plant whose flowering is enhanced when the photoperiod is supplemented with far-red light, and this promotion is mediated by phytochrome. A chemically mutagenized dwarf cultivar of barley was selected for early flowering time (barley maturity daylength response [BMDR]-1) and was made isogenic with the cultivar Shabet (BMDR-8) by backcrossing. BMDR-1 was found to contain higher levels of both phytochrome A and phytochrome B in the dark on immunoblots with monoclonal antibodies from oat (Avena sativa L.) that are specific to different members of the phytochrome gene family. Phytochrome A was light labile in both BMDR-1 and BMDR-8, decreasing to very low levels after 4 d of growth in the light. Phytochrome B was light stable in BMDR-8, being equal in both light and darkness. However, phytochrome B became light labile in BMDR-1 and this destabilization of phytochrome B appeared to make BMDR-1 insensitive to photoperiod. In addition, both the mutant and the wild type lacked any significant promotion of flowering in response to a pulse of far-red light given at the end of day, and the end-of-day, far-red inhibition of tillering is normal in both, suggesting that phytochrome B is not involved with these responses in barley.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dichloroacetamide safeners protect maize (Zea mays L.) against injury from chloroacetanilide and thiocarbamate herbicides. Etiolated maize seedlings have a high-affinity cytosolic-binding site for the safener [3H](R,S)-3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazol-idine ([3H]Saf), and this safener-binding activity (SafBA) is competitively inhibited by the herbicides. The safener-binding protein (SafBP), purified to homogeneity, has a relative molecular weight of 39,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an isoelectric point of 5.5. Antiserum raised against purified SafBP specifically recognizes a 39-kD protein in etiolated maize and sorghum (Sorghum bicolor L.), which have SafBA, but not in etiolated wheat (Triticum aestivum L.), oat (Avena sativa L.), barley (Hordeum vulgare L.), tobacco (Nicotiana tabacum L.), or Arabidopsis, which lack SafBA. SafBP is most abundant in the coleoptile and scarcest in the leaves, consistent with the distribution of SafBA. SBP1, a cDNA encoding SafBP, was cloned using polymerase chain reaction primers based on purified proteolytic peptides. Extracts of Escherichia coli cells expressing SBP1 have strong [3H]Saf binding, which, like binding to the native maize protein, is competitively inhibited by the safener dichlormid and the herbicides S-ethyl dipropylthiocarbamate, alachlor, and metolachlor. SBP1 is predicted to encode a phenolic O-methyltransferase, but SafBP does not O-methylate catechol or caffeic acid. The acquisition of its encoding gene opens experimental approaches for the evaluation of the role of SafBP in response to the relevant safeners and herbicides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in apoplastic carbohydrate concentrations and activities of carbohydrate-degrading enzymes were determined in crown tissues of oat (Avena sativa L., cv Wintok) during cold hardening. During second-phase hardening (−3°C for 3 d) levels of fructan, sucrose, glucose, and fructose in the apoplast increased significantly above that in nonhardened and first-phase-hardened plants. The extent of the increase in apoplastic fructan during second-phase hardening varied with the degree of fructan polymerization (DP) (e.g. DP3 and DP4 increased to a greater extent than DP7 and DP > 7). Activities of invertase and fructan exohydrolase in the crown apoplast increased approximately 4-fold over nonhardened and first-phase-hardened plants. Apoplastic fluid extracted from nonhardened, first-phase-hardened, and second-phase-hardened crown tissues had low levels, of symplastic contamination, as determined by malate dehydrogenase activity. The significance of these results in relation to increases in freezing tolerance from second-phase hardening is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil acidity and low natural fertility are the main limiting factors for grain production in tropical regionssuch as the Brazilian Cerrado. The application of lime to the surface of no-till soil can improve plant nutrition, dry matter production, crop yields and revenue. The present study, conducted at the Lageado Experimental Farm in Botucatu, State of São Paulo, Brazil, is part of an ongoing research project initi-ated in 2002 to evaluate the long-term effects of the surface application of lime on the soil?s chemical attributes, nutrition and kernel/grain yield of peanut (Arachis hypogaea), white oat (Avena sativa L.) and maize (Zea mays L.) inter cropped with palisade grass (Urochloa brizantha cv. Marandu), as well as the forage dry matter yield of palisade grass in winter/spring, its crude protein concentration, estimated meat production, and revenue in a tropical region with a dry winter during four growing seasons. The experiment was designed in randomized blocks with four replications. The treatments consisted of four rates of lime application (0, 1000, 2000 and 4000 kg ha−1), performed in November 2004. The surface application of limestone to the studied tropical no-till soil was efficient in reducing soil acidity from the surface down to a depth of 0.60 m and resulted in greater availability of P and K at the soil surface. Ca and Mg availability in the soil also increased with the lime application rate, up to a depth of 0.60 m. Nutrient absorption was enhanced with liming, especially regarding the nutrient uptake of K, Ca and Mg by plants.Significant increases in the yield components and kernel/grain yields of peanut, white oat and maize were obtained through the surface application of limestone. The lime rates estimated to achieve the maximum grain yield, especially in white oat and maize, were very close to the rates necessary to increase the base saturation of a soil sample collected at a depth of 0?0.20 m to 70%, indicating that the surface liming of 2000 kg ha−1is effective for the studied tropical no-till soil. This lime rate also increases the forage dry matter yield, crude protein concentration and estimated meat production during winter/spring in the maize-palisade grass inter cropping, provides the highest total and mean net profit during the four growing seasons, and can improve the long-term sustainability of tropical agriculture in the Brazilian Cerrado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of the addition of oatmeal and palm fat in the elaboration of biscuits with added L-leucine and calcium in order to develop a product for sarcopenia in the elderly. The biscuits, or cookies, were elaborated applying a central composite rotational design with surface response methodology, and the significant linear, quadratic and interaction terms were used in the second order mathematical model. Physical, physicochemical and sensory analyses were performed by a trained panel. Based on the best results obtained, three cookie formulations were selected for sensory evaluation by the target group and physicochemical determinations. The formulations with the highest sensory scores for appearance and texture and medium scores for color and expansion index were selected. The addition of calcium and leucine increased significantly the concentration of these components in the biscuits elaborated resulting in a cookie with more than 30% of DRI (Dietary Reference Intake) for calcium and leucine. The formulations selected showed high acceptance by the target group; therefore, they can be included in the diet of elderly with sarcopenia as a functional food.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guava (Psidium guajava L.) is a plant often employed in popular medicine. Recently several studies have alerted about the toxicity of substances present in medicinal plants, which can pose risks to the human health. In this sense, the present work aimed to investigate the phytotoxic, cytotoxic and genotoxic action of three guava varieties - Paluma, Pedro Sato and Roxa (purple) - on the plant test system Lactuca sativa L. Thus, macro- and microscopic evaluations were carried out for five infusion concentrations (2.5, 5.0, 10.0, 20.0 and 40.0 g.L-1) prepared from each variety. Distilled water was used as negative control. Chromatographic and spectroscopic analysis by HPLC-PAD indicated that the chemical composition of the infusion of Roxa is different than that of the infusions of the varieties Paluma and Pedro Sato. It was observed that seed germination and root growth in L. sativa exposed to infusions decreased with increasing infusion concentration, regardless of the tested cultivar. For the mitotic index, no statistical differences were observed. On the other hand, a significant increase in the frequency of cell cycle alterations was verified, especially for the highest concentrations tested. The cytogenotoxic was significant. Therefore, guava should not be used indiscriminately in popular medicine.