974 resultados para Automatic term extraction
Resumo:
Long-term visual memory performance was impaired by two types of challenges: a diazepam challenge on acquisition and a sensory challenge on recognition. Using positron-emission tomography regional cerebral blood flow imaging, we studied the effect of these challenges on regional brain activation during the delayed recognition of abstract visual shapes as compared with a baseline fixation task. Both challenges induced a significant decrease in differential activation in the left fusiform gyrus, suggesting that this region is involved in the automatic or volitional comparison of incoming and stored stimuli. In contrast, thalamic differential activation increased in response to memory challenges. This increase might reflect enhanced retrieval attempts as a compensatory mechanism for restoring recognition performance.
Resumo:
Circulating miRNAs in body fluids, particularly serum, are promising candidates for future routine biomarker profiling in various pathologic conditions in human and veterinary medicine. However, reliable standardized methods for miRNA extraction from equine serum and fresh or archived whole blood are sorely lacking. We systematically compared various miRNA extraction methods from serum and whole blood after short and long-term storage without addition of RNA stabilizing additives prior to freezing. Time of storage at room temperature prior to freezing did not affect miRNA quality in serum. Furthermore, we showed that miRNA of NGS-sufficient quality can be recovered from blood samples after >10 years of storage at -80 °C. This allows retrospective analyses of miRNAs from archived samples.
Resumo:
NSF MCS 77-22830."
Resumo:
The role of polarisation in late time complex resonance based target identification is investigated numerically for the case of an L-shaped wire. While repeated extraction of the resonances for varying polarisation allows for better signal-to-noise immunity, it is also found that there are preferred polarisations for each complex resonance. The first few of these polarisations are extracted for the sample target.
Risk of serious NSAID-related gastrointestinal events during long-term exposure: a systematic review
Resumo:
Objective: Exposure to non-steroidal anti-inflammatory drugs (NSAIDs) is associated wit increased risk of serious gastrointestinal (GI) events compared with non-exposure. We investigated whether that risk is sustained over time. Data sources: Cochrane Controlled Trials Register (to 2002); MEDLINE, EMBASE, Derwent Drug File and Current Contents (1999-2002); manual searching of reviews (1999-2002). Study selection: From 479 search results reviewed and 221 articles retrieved, seven studies of patients exposed to prescription non-selective NSAIDs for more than 6 months and reporting time-dependent serious GI event rates were selected for quantitative data synthesis. These were stratified into two groups by study design. Data extraction: Incidence of GI events and number of patients at specific time points were extracted. Data synthesis: Meta-regression analyses were performed. Change in risk was evaluated by testing whether the slope of the regression line declined over time. Four randomised controlled trials (RCTs) provided evaluable data from five NSAID arms (aspirin, naproxen, two ibuprofen arms, and diclofenac). When the RCT data were combined, a small significant decline in annualised risk was seen: -0.005% (95% Cl, -0.008% to -0.001%) per month. Sensitivity analyses were conducted because there was disparity within the RCT data. The pooled estimate from three cohort studies showed no significant decline in annualised risk over periods up to 2 years: -0.003% (95% Cl, -0.008% to 0.003%) per month. Conclusions: Small decreases in risk over time were observed; these were of negligible clinical importance. For patients who need long-term (> 6 months) treatment, precautionary measures should be considered to reduce the net probability of serious GI events over the anticipated treatment duration. The effect of intermittent versus regular daily therapy on long-term risk needs further investigation.
Resumo:
Fast Classification (FC) networks were inspired by a biologically plausible mechanism for short term memory where learning occurs instantaneously. Both weights and the topology for an FC network are mapped directly from the training samples by using a prescriptive training scheme. Only two presentations of the training data are required to train an FC network. Compared with iterative learning algorithms such as Back-propagation (which may require many hundreds of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks may be suitable for applications where real-time classification is needed. In this paper, the FC networks are applied for the real-time extraction of gene expressions for Chlamydia microarray data. Both the classification performance and learning time of the FC networks are compared with the Multi-Layer Proceptron (MLP) networks and support-vector-machines (SVM) in the same classification task. The FC networks are shown to have extremely fast learning time and comparable classification accuracy.
Resumo:
Investment in mining projects, like most business investment, is susceptible to risk and uncertainty. The ability to effectively identify, assess and manage risk may enable strategic investments to be sheltered and operations to perform closer to their potential. In mining, geological uncertainty is seen as the major contributor to not meeting project expectations. The need to assess and manage geological risk for project valuation and decision-making translates to the need to assess and manage risk in any pertinent parameter of open pit design and production scheduling. This is achieved by taking geological uncertainty into account in the mine optimisation process. This thesis develops methods that enable geological uncertainty to be effectively modelled and the resulting risk in long-term production scheduling to be quantified and managed. One of the main accomplishments of this thesis is the development of a new, risk-based method for the optimisation of long-term production scheduling. In addition to maximising economic returns, the new method minimises the risk of deviating from production forecasts, given the understanding of the orebody. This ability represents a major advance in the risk management of open pit mining.
Resumo:
This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 0.2% live births, 1.1% for preterm neonates, and 1.3% for infants weighing less than 2500 g at birth. Neonatal seizures can be classified into four main categories: clonic, tonic, myoclonic, and subtle. Seizures in newborns have to be promptly and accurately recognized in order to establish timely treatments that could avoid an increase of the underlying brain damage. Respiratory diseases related to the occurrence of apnoea episodes may be caused by cerebrovascular events. Among the wide range of causes of apnoea, besides seizures, a relevant one is Congenital Central Hypoventilation Syndrome (CCHS) \cite{Healy}. With a reported prevalence of 1 in 200,000 live births, CCHS, formerly known as Ondine's curse, is a rare life-threatening disorder characterized by a failure of the automatic control of breathing, caused by mutations in a gene classified as PHOX2B. CCHS manifests itself, in the neonatal period, with episodes of cyanosis or apnoea, especially during quiet sleep. The reported mortality rates range from 8% to 38% of newborn with genetically confirmed CCHS. Nowadays, CCHS is considered a disorder of autonomic regulation, with related risk of sudden infant death syndrome (SIDS). Currently, the standard method of diagnosis, for both diseases, is based on polysomnography, a set of sensors such as ElectroEncephaloGram (EEG) sensors, ElectroMyoGraphy (EMG) sensors, ElectroCardioGraphy (ECG) sensors, elastic belt sensors, pulse-oximeter and nasal flow-meters. This monitoring system is very expensive, time-consuming, moderately invasive and requires particularly skilled medical personnel, not always available in a Neonatal Intensive Care Unit (NICU). Therefore, automatic, real-time and non-invasive monitoring equipments able to reliably recognize these diseases would be of significant value in the NICU. A very appealing monitoring tool to automatically detect neonatal seizures or breathing disorders may be based on acquiring, through a network of sensors, e.g., a set of video cameras, the movements of the newborn's body (e.g., limbs, chest) and properly processing the relevant signals. An automatic multi-sensor system could be used to permanently monitor every patient in the NICU or specific patients at home. Furthermore, a wire-free technique may be more user-friendly and highly desirable when used with infants, in particular with newborns. This work has focused on a reliable method to estimate the periodicity in pathological movements based on the use of the Maximum Likelihood (ML) criterion. In particular, average differential luminance signals from multiple Red, Green and Blue (RGB) cameras or depth-sensor devices are extracted and the presence or absence of a significant periodicity is analysed in order to detect possible pathological conditions. The efficacy of this monitoring system has been measured on the basis of video recordings provided by the Department of Neurosciences of the University of Parma. Concerning clonic seizures, a kinematic analysis was performed to establish a relationship between neonatal seizures and human inborn pattern of quadrupedal locomotion. Moreover, we have decided to realize simulators able to replicate the symptomatic movements characteristic of the diseases under consideration. The reasons is, essentially, the opportunity to have, at any time, a 'subject' on which to test the continuously evolving detection algorithms. Finally, we have developed a smartphone App, called 'Smartphone based contactless epilepsy detector' (SmartCED), able to detect neonatal clonic seizures and warn the user about the occurrence in real-time.
Resumo:
Geometric information relating to most engineering products is available in the form of orthographic drawings or 2D data files. For many recent computer based applications, such as Computer Integrated Manufacturing (CIM), these data are required in the form of a sophisticated model based on Constructive Solid Geometry (CSG) concepts. A recent novel technique in this area transfers 2D engineering drawings directly into a 3D solid model called `the first approximation'. In many cases, however, this does not represent the real object. In this thesis, a new method is proposed and developed to enhance this model. This method uses the notion of expanding an object in terms of other solid objects, which are either primitive or first approximation models. To achieve this goal, in addition to the prepared subroutine to calculate the first approximation model of input data, two other wireframe models are found for extraction of sub-objects. One is the wireframe representation on input, and the other is the wireframe of the first approximation model. A new fast method is developed for the latter special case wireframe, which is named the `first approximation wireframe model'. This method avoids the use of a solid modeller. Detailed descriptions of algorithms and implementation procedures are given. In these techniques utilisation of dashed line information is also considered in improving the model. Different practical examples are given to illustrate the functioning of the program. Finally, a recursive method is employed to automatically modify the output model towards the real object. Some suggestions for further work are made to increase the domain of objects covered, and provide a commercially usable package. It is concluded that the current method promises the production of accurate models for a large class of objects.
Resumo:
The primary objective of this research was to understand what kinds of knowledge and skills people use in `extracting' relevant information from text and to assess the extent to which expert systems techniques could be applied to automate the process of abstracting. The approach adopted in this thesis is based on research in cognitive science, information science, psycholinguistics and textlinguistics. The study addressed the significance of domain knowledge and heuristic rules by developing an information extraction system, called INFORMEX. This system, which was implemented partly in SPITBOL, and partly in PROLOG, used a set of heuristic rules to analyse five scientific papers of expository type, to interpret the content in relation to the key abstract elements and to extract a set of sentences recognised as relevant for abstracting purposes. The analysis of these extracts revealed that an adequate abstract could be generated. Furthermore, INFORMEX showed that a rule based system was a suitable computational model to represent experts' knowledge and strategies. This computational technique provided the basis for a new approach to the modelling of cognition. It showed how experts tackle the task of abstracting by integrating formal knowledge as well as experiential learning. This thesis demonstrated that empirical and theoretical knowledge can be effectively combined in expert systems technology to provide a valuable starting approach to automatic abstracting.
Resumo:
In this paper, we propose an unsupervised methodology to automatically discover pairs of semantically related words by highlighting their local environment and evaluating their semantic similarity in local and global semantic spaces. This proposal di®ers from previous research as it tries to take the best of two different methodologies i.e. semantic space models and information extraction models. It can be applied to extract close semantic relations, it limits the search space and it is unsupervised.
Resumo:
Carte du Ciel (from French, map of the sky) is a part of a 19th century extensive international astronomical project whose goal was to map the entire visible sky. The results of this vast effort were collected in the form of astrographic plates and their paper representatives that are called astrographic maps and are widely distributed among many observatories and astronomical institutes over the world. Our goal is to design methods and algorithms to automatically extract data from digitized Carte du Ciel astrographic maps. This paper examines the image processing and pattern recognition techniques that can be adopted for automatic extraction of astronomical data from stars’ triple expositions that can aid variable stars detection in Carte du Ciel maps.
Resumo:
Freeway systems are becoming more congested each day. One contribution to freeway traffic congestion comprises platoons of on-ramp traffic merging into freeway mainlines. As a relatively low-cost countermeasure to the problem, ramp meters are being deployed in both directions of an 11-mile section of I-95 in Miami-Dade County, Florida. The local Fuzzy Logic (FL) ramp metering algorithm implemented in Seattle, Washington, has been selected for deployment. The FL ramp metering algorithm is powered by the Fuzzy Logic Controller (FLC). The FLC depends on a series of parameters that can significantly alter the behavior of the controller, thus affecting the performance of ramp meters. However, the most suitable values for these parameters are often difficult to determine, as they vary with current traffic conditions. Thus, for optimum performance, the parameter values must be fine-tuned. This research presents a new method of fine tuning the FLC parameters using Particle Swarm Optimization (PSO). PSO attempts to optimize several important parameters of the FLC. The objective function of the optimization model incorporates the METANET macroscopic traffic flow model to minimize delay time, subject to the constraints of reasonable ranges of ramp metering rates and FLC parameters. To further improve the performance, a short-term traffic forecasting module using a discrete Kalman filter was incorporated to predict the downstream freeway mainline occupancy. This helps to detect the presence of downstream bottlenecks. The CORSIM microscopic simulation model was selected as the platform to evaluate the performance of the proposed PSO tuning strategy. The ramp-metering algorithm incorporating the tuning strategy was implemented using CORSIM's run-time extension (RTE) and was tested on the aforementioned I-95 corridor. The performance of the FLC with PSO tuning was compared with the performance of the existing FLC without PSO tuning. The results show that the FLC with PSO tuning outperforms the existing FL metering, fixed-time metering, and existing conditions without metering in terms of total travel time savings, average speed, and system-wide throughput.