987 resultados para Automatic Vehicle Identification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Federal Transit Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Vehicle Safety Compliance, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of polarisation in late time complex resonance based target identification is investigated numerically for the case of an L-shaped wire. While repeated extraction of the resonances for varying polarisation allows for better signal-to-noise immunity, it is also found that there are preferred polarisations for each complex resonance. The first few of these polarisations are extracted for the sample target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research examines the deposition of airborne particles which contain heavy metals and investigates the methods that can be used to identify their sources. The research focuses on lead and cadmium because these two metals are of growing public and scientific concern on environmental health grounds. The research consists of three distinct parts. The first is the development and evaluation of a new deposition measurement instrument - the deposit cannister - designed specifically for large-scale surveys in urban areas. The deposit cannister is specifically designed to be cheap, robust, and versatile and therefore to permit comprehensive high-density urban surveys. The siting policy reduces contamination from locally resuspended surface-dust. The second part of the research has involved detailed surveys of heavy metal deposition in Walsall, West Midlands, using the new high-density measurement method. The main survey, conducted over a six-week period in November - December 1982, provided 30-day samples of deposition at 250 different sites. The results have been used to examine the magnitude and spatial variability of deposition rates in the case-study area, and to evaluate the performance of the measurement method. The third part of the research has been to conduct a 'source-identification' exercise. The methods used have been Receptor Models - Factor Analysis and Cluster Analysis - and a predictive source-based deposition model. The results indicate that there are six main source processes contributing to deposition of metals in the Walsall area: coal combustion, vehicle emissions, ironfounding, copper refining and two general industrial/urban processes. |A source-based deposition model has been calibrated using facctorscores for one source factor as the dependent variable, rather than metal deposition rates, thus avoiding problems traditionally encountered in calibrating models in complex multi-source areas. Empirical evidence supports the hypothesised associatlon of this factor with emissions of metals from the ironfoundry industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A navigation and positioning system for an electric automatic guided vehicle has been designed and implemented on an industrial pallet truck. The system includes an optical sensor mounted on the vehicle, capable of recognizing special markers at a distance of 0.3m. Software implemented in a z-80 microprocessor controls the sensor, performs all data processing and contains the decision making processes necessary for the vehicle to navigate its way to its task location. A second microprocessor is used to control the vehicle's drive motors under instruction from the navigation unit, to accurately position the vehicle at its destination. The sensor reliably recognises markers at vehicle speeds up to 1ms- 1, and the system has been integrated into a multiprocessor controlled wire-guidance system and applied to a prototype vehicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Latent topics derived by topic models such as Latent Dirichlet Allocation (LDA) are the result of hidden thematic structures which provide further insights into the data. The automatic labelling of such topics derived from social media poses however new challenges since topics may characterise novel events happening in the real world. Existing automatic topic labelling approaches which depend on external knowledge sources become less applicable here since relevant articles/concepts of the extracted topics may not exist in external sources. In this paper we propose to address the problem of automatic labelling of latent topics learned from Twitter as a summarisation problem. We introduce a framework which apply summarisation algorithms to generate topic labels. These algorithms are independent of external sources and only rely on the identification of dominant terms in documents related to the latent topic. We compare the efficiency of existing state of the art summarisation algorithms. Our results suggest that summarisation algorithms generate better topic labels which capture event-related context compared to the top-n terms returned by LDA. © 2014 Association for Computational Linguistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Returnable transport equipment (RTE) such as pallets form an integral part of the supply chain and poor management leads to costly losses. Companies often address this matter by outsourcing the management of RTE to logistics service providers (LSPs). LSPs are faced with the task to provide logistical expertise to reduce RTE related waste, whilst differentiating their own services to remain competitive. In the current challenging economic climate, the role of the LSP to deliver innovative ways to achieve competitive advantage has never been so important. It is reported that radio frequency identification (RFID) application to RTE enables LSPs such as DHL to gain competitive advantage and offer clients improvements such as loss reduction, process efficiency improvement and effective security. However, the increased visibility and functionality of RFID enabled RTE requires further investigation in regards to decision‐making. The distributed nature of the RTE network favours a decentralised decision‐making format. Agents are an effective way to represent objects from the bottom‐up, capturing the behaviour and enabling localised decision‐making. Therefore, an agent based system is proposed to represent the RTE network and utilise the visibility and data gathered from RFID tags. Two types of agents are developed in order to represent the trucks and RTE, which have bespoke rules and algorithms in order to facilitate negotiations. The aim is to create schedules, which integrate RTE pick‐ups as the trucks go back to the depot. The findings assert that: - agent based modelling provides an autonomous tool, which is effective in modelling RFID enabled RTE in a decentralised utilising the real‐time data facility. ‐ the RFID enabled RTE model developed enables autonomous agent interaction, which leads to a feasible schedule integrating both forward and reverse flows for each RTE batch. ‐ the RTE agent scheduling algorithm developed promotes the utilisation of RTE by including an automatic return flow for each batch of RTE, whilst considering the fleet costs andutilisation rates. ‐ the research conducted contributes an agent based platform, which LSPs can use in order to assess the most appropriate strategies to implement for RTE network improvement for each of their clients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA-binding proteins are crucial for various cellular processes and hence have become an important target for both basic research and drug development. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to establish an automated method for rapidly and accurately identifying DNA-binding proteins based on their sequence information alone. Owing to the fact that all biological species have developed beginning from a very limited number of ancestral species, it is important to take into account the evolutionary information in developing such a high-throughput tool. In view of this, a new predictor was proposed by incorporating the evolutionary information into the general form of pseudo amino acid composition via the top-n-gram approach. It was observed by comparing the new predictor with the existing methods via both jackknife test and independent data-set test that the new predictor outperformed its counterparts. It is anticipated that the new predictor may become a useful vehicle for identifying DNA-binding proteins. It has not escaped our notice that the novel approach to extract evolutionary information into the formulation of statistical samples can be used to identify many other protein attributes as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spamming has been a widespread problem for social networks. In recent years there is an increasing interest in the analysis of anti-spamming for microblogs, such as Twitter. In this paper we present a systematic research on the analysis of spamming in Sina Weibo platform, which is currently a dominant microblogging service provider in China. Our research objectives are to understand the specific spamming behaviors in Sina Weibo and find approaches to identify and block spammers in Sina Weibo based on spamming behavior classifiers. To start with the analysis of spamming behaviors we devise several effective methods to collect a large set of spammer samples, including uses of proactive honeypots and crawlers, keywords based searching and buying spammer samples directly from online merchants. We processed the database associated with these spammer samples and interestingly we found three representative spamming behaviors: Aggressive advertising, repeated duplicate reposting and aggressive following. We extract various features and compare the behaviors of spammers and legitimate users with regard to these features. It is found that spamming behaviors and normal behaviors have distinct characteristics. Based on these findings we design an automatic online spammer identification system. Through tests with real data it is demonstrated that the system can effectively detect the spamming behaviors and identify spammers in Sina Weibo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter presents Radio Frequency Identification (RFID), which is one of the Automatic Identification and Data Capture (AIDC) technologies (Wamba and Boeck, 2008) and discusses the application of RFID in E-Commerce. Firstly RFID is defined and the tag and reader components of the RFID system are explained. Then historical context of RFID is briefly discussed. Next, RFID is contrasted with other AIDC technologies, especially the use of barcodes which are commonly applied in E-Commerce. Lastly, RFID applications in E-Commerce are discussed with the focus on achievable benefits and obstacles to successful applications of RFID in E-Commerce, and ways to alleviate them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of vehicle speed for Structural Health Monitoring (SHM) of bridges under operational conditions are studied in this paper. The moving vehicle is modelled as a single degree oscillator traversing a damaged beam at a constant speed. The bridge is modelled as simply supported Euler-Bernoulli beam with a breathing crack. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness of the bridge deck is modelled using road classification according to ISO 8606:1995(E). The stochastic description of the unevenness of the road surface is used as an aid to monitor the health of the structure in its operational condition. Numerical simulations are conducted considering the effects of changing vehicle speed with regards to cumulant based statistical damage detection parameters. The detection and calibration of damage at different levels is based on an algorithm dependent on responses of the damaged beam due to passages of the load. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. Sensitivity of calibration values is studied. The findings of this paper are important for establishing the expectations from different vehicle speeds on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring. The identification of bunching of these speed ranges provides guidelines for using the methodology developed in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dataset gives the collecting information of New England Seamount Geodia species from the Yale Peabody Museum. Museum numbers, fixation processing and Genbank accession numbers are also given.