970 resultados para Automatic Peak Detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is general consensus that context can be a rich source of information about an object's identity, location and scale. In fact, the structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object. Here we introduce a simple probabilistic framework for modeling the relationship between context and object properties based on the correlation between the statistics of low-level features across the entire scene and the objects that it contains. The resulting scheme serves as an effective procedure for object priming, context driven focus of attention and automatic scale-selection on real-world scenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accuracy of a 3D reconstruction using laser scanners is significantly determined by the detection of the laser stripe. Since the energy pattern of such a stripe corresponds to a Gaussian profile, it makes sense to detect the point of maximum light intensity (or peak) by computing the zero-crossing point of the first derivative of such Gaussian profile. However, because noise is present in every physical process, such as electronic image formation, it is not sensitive to perform the derivative of the image of the stripe in almost any situation, unless a previous filtering stage is done. Considering that stripe scanning is an inherently row-parallel process, every row of a given image must be processed independently in order to compute its corresponding peak position in the row. This paper reports on the use of digital filtering techniques in order to cope with the scanning of different surfaces with different optical properties and different noise levels, leading to the proposal of a more accurate numerical peak detector, even at very low signal-to-noise ratios

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquesta tesi està emmarcada dins la detecció precoç de masses, un dels símptomes més clars del càncer de mama, en imatges mamogràfiques. Primerament, s'ha fet un anàlisi extensiu dels diferents mètodes de la literatura, concloent que aquests mètodes són dependents de diferent paràmetres: el tamany i la forma de la massa i la densitat de la mama. Així, l'objectiu de la tesi és analitzar, dissenyar i implementar un mètode de detecció robust i independent d'aquests tres paràmetres. Per a tal fi, s'ha construït un patró deformable de la massa a partir de l'anàlisi de masses reals i, a continuació, aquest model és buscat en les imatges seguint un esquema probabilístic, obtenint una sèrie de regions sospitoses. Fent servir l'anàlisi 2DPCA, s'ha construït un algorisme capaç de discernir aquestes regions són realment una massa o no. La densitat de la mama és un paràmetre que s'introdueix de forma natural dins l'algorisme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data to detect flooded regions in urban areas is described. The study uses a TerraSAR-X image of a 1 in 150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SAR End-To-End simulator (SETES) was used in conjunction with airborne scanning laser altimetry (LiDAR) data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and taller vegetation. A semi-automatic algorithm for the detection of floodwater in urban areas is described, together with its validation using the aerial photographs. 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. The algorithm is aimed at producing urban flood extents with which to calibrate and validate urban flood inundation models, and these findings indicate that TerraSAR-X is capable of providing useful data for this purpose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X data to detect flooded regions in urban areas is described. An important application for this would be the calibration and validation of the flood extent predicted by an urban flood inundation model. To date, research on such models has been hampered by lack of suitable distributed validation data. The study uses a 3m resolution TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with airborne LiDAR data to estimate regions of the TerraSAR-X image in which water would not be visible due to radar shadow or layover caused by buildings and taller vegetation, and these regions were masked out in the flood detection process. A semi-automatic algorithm for the detection of floodwater was developed, based on a hybrid approach. Flooding in rural areas adjacent to the urban areas was detected using an active contour model (snake) region-growing algorithm seeded using the un-flooded river channel network, which was applied to the TerraSAR-X image fused with the LiDAR DTM to ensure the smooth variation of heights along the reach. A simpler region-growing approach was used in the urban areas, which was initialized using knowledge of the flood waterline in the rural areas. Seed pixels having low backscatter were identified in the urban areas using supervised classification based on training areas for water taken from the rural flood, and non-water taken from the higher urban areas. Seed pixels were required to have heights less than a spatially-varying height threshold determined from nearby rural waterline heights. Seed pixels were clustered into urban flood regions based on their close proximity, rather than requiring that all pixels in the region should have low backscatter. This approach was taken because it appeared that urban water backscatter values were corrupted in some pixels, perhaps due to contributions from side-lobes of strong reflectors nearby. The TerraSAR-X urban flood extent was validated using the flood extent visible in the aerial photos. It turned out that 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. These findings indicate that TerraSAR-X is capable of providing useful data for the calibration and validation of urban flood inundation models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ovarian cancer is characterized by vague, non-specific symptoms, advanced stage at diagnosis and poor overall survival. A nested case control study was undertaken on stored serial serum samples from women who developed ovarian cancer and healthy controls (matched for serum processing and storage conditions as well as attributes such as age) in a pilot randomized controlled trial of ovarian cancer screening. The unique feature of this study is that the women were screened for up to 7 years. The serum samples underwent prefractionation using a reversed-phase batch extraction protocol prior to MALDI-TOF MS data acquisition. Our exploratory analysis shows that combining a single MS peak with CA125 allows statistically significant discrimination at the 5% level between cases and controls up to 12 months in advance of the original diagnosis of ovarian cancer. Such combinations work much better than a single peak or CA125 alone. This paper demonstrates that mass spectra from the low molecular weight serum proteome carry information useful for early detection of ovarian cancer. The next step is to identify the specific biomarkers that make early detection possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

R. Benjamin (1995) addressed the application of the “object 3D” X ray reconstruction technique for electronically “unpacking” suspect items, when screening aircraft luggage. However, there is no satisfactory solution to the mass screening of hold luggage. Computed Tomography, CT, entails excessive radiation dosages, and its rate of throughput is quite inadequate. A novel variant of “object 3D” is therefore put forward, adapting some of the technology of existing cabin luggage screening systems-but on a substantially larger scale-which does achieve the required throughput at an acceptable radiation dosage and cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-X’s restricted visibility of the ground surface due to radar shadow and layover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management and flood forecasting. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: A nested case-control discovery study was undertaken 10 test whether information within the serum peptidome can improve on the utility of CA125 for early ovarian cancer detection. Materials and Methods: High-throughput matrix-assisted laser desorption ionisation mass spectrometry (MALDI-MS) was used to profile 295 serum samples from women pre-dating their ovarian cancer diagnosis and from 585 matched control samples. Classification rules incorporating CA125 and MS peak intensities were tested for discriminating ability. Results: Two peaks were found which in combination with CA125 discriminated cases from controls up to 15 and 11 months before diagnosis, respectively, and earlier than using CA125 alone. One peak was identified as connective tissue-activating peptide III (CTAPIII), whilst the other was putatively identified as platelet factor 4 (PF4). ELISA data supported the down-regulation of PF4 in early cancer cases. Conclusion: Serum peptide information with CA125 improves lead time for early detection of ovarian cancer. The candidate markers are platelet-derived chemokines, suggesting a link between platelet function and tumour development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric Rivers (ARs), narrow plumes of enhanced moisture transport in the lower troposphere, are a key synoptic feature behind winter flooding in midlatitude regions. This article develops an algorithm which uses the spatial and temporal extent of the vertically integrated horizontal water vapor transport for the detection of persistent ARs (lasting 18 h or longer) in five atmospheric reanalysis products. Applying the algorithm to the different reanalyses in the vicinity of Great Britain during the winter half-years of 1980–2010 (31 years) demonstrates generally good agreement of AR occurrence between the products. The relationship between persistent AR occurrences and winter floods is demonstrated using winter peaks-over-threshold (POT) floods (with on average one flood peak per winter). In the nine study basins, the number of winter POT-1 floods associated with persistent ARs ranged from approximately 40 to 80%. A Poisson regression model was used to describe the relationship between the number of ARs in the winter half-years and the large-scale climate variability. A significant negative dependence was found between AR totals and the Scandinavian Pattern (SCP), with a greater frequency of ARs associated with lower SCP values.