855 resultados para Automatic Data Processing.
Resumo:
The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.
Resumo:
Serving as a powerful tool for extracting localized variations in non-stationary signals, applications of wavelet transforms (WTs) in traffic engineering have been introduced; however, lacking in some important theoretical fundamentals. In particular, there is little guidance provided on selecting an appropriate WT across potential transport applications. This research described in this paper contributes uniquely to the literature by first describing a numerical experiment to demonstrate the shortcomings of commonly-used data processing techniques in traffic engineering (i.e., averaging, moving averaging, second-order difference, oblique cumulative curve, and short-time Fourier transform). It then mathematically describes WT’s ability to detect singularities in traffic data. Next, selecting a suitable WT for a particular research topic in traffic engineering is discussed in detail by objectively and quantitatively comparing candidate wavelets’ performances using a numerical experiment. Finally, based on several case studies using both loop detector data and vehicle trajectories, it is shown that selecting a suitable wavelet largely depends on the specific research topic, and that the Mexican hat wavelet generally gives a satisfactory performance in detecting singularities in traffic and vehicular data.
Resumo:
1. Autonomous acoustic recorders are widely available and can provide a highly efficient method of species monitoring, especially when coupled with software to automate data processing. However, the adoption of these techniques is restricted by a lack of direct comparisons with existing manual field surveys. 2. We assessed the performance of autonomous methods by comparing manual and automated examination of acoustic recordings with a field-listening survey, using commercially available autonomous recorders and custom call detection and classification software. We compared the detection capability, time requirements, areal coverage and weather condition bias of these three methods using an established call monitoring programme for a nocturnal bird, the little spotted kiwi(Apteryx owenii). 3. The autonomous recorder methods had very high precision (>98%) and required <3% of the time needed for the field survey. They were less sensitive, with visual spectrogram inspection recovering 80% of the total calls detected and automated call detection 40%, although this recall increased with signal strength. The areal coverage of the spectrogram inspection and automatic detection methods were 85% and 42% of the field survey. The methods using autonomous recorders were more adversely affected by wind and did not show a positive association between ground moisture and call rates that was apparent from the field counts. However, all methods produced the same results for the most important conservation information from the survey: the annual change in calling activity. 4. Autonomous monitoring techniques incur different biases to manual surveys and so can yield different ecological conclusions if sampling is not adjusted accordingly. Nevertheless, the sensitivity, robustness and high accuracy of automated acoustic methods demonstrate that they offer a suitable and extremely efficient alternative to field observer point counts for species monitoring.
Resumo:
This study used automated data processing techniques to calculate a set of novel treatment plan accuracy metrics, and investigate their usefulness as predictors of quality assurance (QA) success and failure. 151 beams from 23 prostate and cranial IMRT treatment plans were used in this study. These plans had been evaluated before treatment using measurements with a diode array system. The TADA software suite was adapted to allow automatic batch calculation of several proposed plan accuracy metrics, including mean field area, small-aperture, off-axis and closed-leaf factors. All of these results were compared the gamma pass rates from the QA measurements and correlations were investigated. The mean field area factor provided a threshold field size (5 cm2, equivalent to a 2.2 x 2.2 cm2 square field), below which all beams failed the QA tests. The small aperture score provided a useful predictor of plan failure, when averaged over all beams, despite being weakly correlated with gamma pass rates for individual beams. By contrast, the closed leaf and off-axis factors provided information about the geometric arrangement of the beam segments but were not useful for distinguishing between plans that passed and failed QA. This study has provided some simple tests for plan accuracy, which may help minimise time spent on QA assessments of treatments that are unlikely to pass.
Resumo:
This paper describes a safety data recording and analysis system that has been developed to capture safety occurrences including precursors using high-definition forward-facing video from train cabs and data from other train-borne systems. The paper describes the data processing model and how events detected through data analysis are related to an underlying socio-technical model of accident causation. The integrated approach to safety data recording and analysis insures systemic factors that condition, influence or potentially contribute to an occurrence are captured both for safety occurrences and precursor events, providing a rich tapestry of antecedent causal factors that can significantly improve learning around accident causation. This can ultimately provide benefit to railways through the development of targeted and more effective countermeasures, better risk models and more effective use and prioritization of safety funds. Level crossing occurrences are a key focus in this paper with data analysis scenarios describing causal factors around near-miss occurrences. The paper concludes with a discussion on how the system can also be applied to other types of railway safety occurrences.
Resumo:
Increasingly larger scale applications are generating an unprecedented amount of data. However, the increasing gap between computation and I/O capacity on High End Computing machines makes a severe bottleneck for data analysis. Instead of moving data from its source to the output storage, in-situ analytics processes output data while simulations are running. However, in-situ data analysis incurs much more computing resource contentions with simulations. Such contentions severely damage the performance of simulation on HPE. Since different data processing strategies have different impact on performance and cost, there is a consequent need for flexibility in the location of data analytics. In this paper, we explore and analyze several potential data-analytics placement strategies along the I/O path. To find out the best strategy to reduce data movement in given situation, we propose a flexible data analytics (FlexAnalytics) framework in this paper. Based on this framework, a FlexAnalytics prototype system is developed for analytics placement. FlexAnalytics system enhances the scalability and flexibility of current I/O stack on HEC platforms and is useful for data pre-processing, runtime data analysis and visualization, as well as for large-scale data transfer. Two use cases – scientific data compression and remote visualization – have been applied in the study to verify the performance of FlexAnalytics. Experimental results demonstrate that FlexAnalytics framework increases data transition bandwidth and improves the application end-to-end transfer performance.
Resumo:
During the last decades there has been a global shift in forest management from a focus solely on timber management to ecosystem management that endorses all aspects of forest functions: ecological, economic and social. This has resulted in a shift in paradigm from sustained yield to sustained diversity of values, goods and benefits obtained at the same time, introducing new temporal and spatial scales into forest resource management. The purpose of the present dissertation was to develop methods that would enable spatial and temporal scales to be introduced into the storage, processing, access and utilization of forest resource data. The methods developed are based on a conceptual view of a forest as a hierarchically nested collection of objects that can have a dynamically changing set of attributes. The temporal aspect of the methods consists of lifetime management for the objects and their attributes and of a temporal succession linking the objects together. Development of the forest resource data processing method concentrated on the extensibility and configurability of the data content and model calculations, allowing for a diverse set of processing operations to be executed using the same framework. The contribution of this dissertation to the utilisation of multi-scale forest resource data lies in the development of a reference data generation method to support forest inventory methods in approaching single-tree resolution.
Resumo:
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.
Resumo:
The hot deformation behavior of α brass with varying zinc contents in the range 3%–30% was characterized using hot compression testing in the temperature range 600–900 °C and strain rate range 0.001–100 s−1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by Image where m is the strain rate sensitivity) with temperature and strain rate were obtained. α brass exhibits a domain of dynamic recrystallization (DRX) at temperatures greater than 0.85Tm and at strain rates lower than 1 s−1. The maximum efficiency of power dissipation increases with increasing zinc content and is in the range 33%–53%. The DRX domain shifts to lower strain rates for higher zinc contents and the strain rate for peak efficiency is in the range 0.0001–0.05 s−1. The results indicate that the DRX in α brass is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb.
Resumo:
The effect of zirconium on the hot working characteristics of alpha and alpha-beta brass was studied in the temperature range of 500 to 850-degrees-C and the strain rate range of 0.001 to 100 s-1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)] where m is the strain rate sensitivity) with temperature and strain rate were obtained. The addition of zirconium to alpha brass decreased the maximum efficiency of power dissipation from 53 to 39%, increased the strain rate for dynamic recrystallization (DRX) from 0.001 to 0.1 s-1 and improved the hot workability. Alpha-beta brasses with and without zirconium exhibit a domain in the temperature range from 550 to 750-degrees-C and at strain rates lower than 1 s-1 with a maximum efficiency of power dissipation of nearly 50 % occurring in the temperature range of 700 to 750-degrees-C and a strain rate of 0.001 s-1. In the domain, the alpha phase undergoes DRX and controls the hot deformation of the alloy whereas the beta phase deforms superplastically. The addition of zirconium to alpha-beta brass has not affected the processing maps as it gets partitioned to the beta phase and does not alter the constitutive behavior of the alpha phase
Resumo:
The constitutive behaviour of agr — nickel silver in the temperature range 700–950 °C and strain rate range 0.001–100 s–1 was characterized with the help of a processing map generated on the basis of the principles of the ldquodynamic materials modelrdquo of Prasadet al Using the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by 2m/(m+1) wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-nickel silver exhibits a single domain at temperatures greater than 750 °C and at strain rates lower than 1s–1, with a maximum efficiency of 38% occurring at about 950 °C and at a strain rate of 0.1 s–1. In the domain the material undergoes dynamic recrystallization (DRX). On the basis of a model, it is shown that the DRX is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb. At high strain rates (10 and 100s–1) the material undergoes microstructural instabilities, the manifestations of which are in the form of adiabatic shear bands and strain markings.
Resumo:
The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.
Resumo:
Several researchers have looked into various issues related to automatic parallelization of sequential programs for multicomputers. But there is a need for a coherent framework which encompasses all these issues. In this paper we present a such a framework which takes best advantage of the multicomputer architecture. We resort to tiling transformation for iteration space partitioning and propose a scheme of automatic data partitioning and dynamic data distribution. We have tried a simple implementation of our scheme on a transputer based multicomputer [1] and the results are encouraging.