925 resultados para Automatic Check-in
Resumo:
The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.
Resumo:
"One of the more spirited discussions of the first week of this federal election campaign has concerned whether News Corp Australia, as our largest print media company, has a vested interest in the election outcome..."--publisher website
Resumo:
Aims/Objectives Our study aims to test the capacity of a newly developed smartphone innovation to obtain data on social, structural, and spatial determinants of the daily health-related behaviours of women living in urban Brisbane neighbourhoods who have survived endometrial cancer. Methods The women used a mobile web app designed specifically for the project to record GIS/location data on every destination they visited within their local urban neighbourhoods over a two-week period. Additionally, we gathered textual data on the social context/reasons for travel, as well as mode of transport to reach these destinations. The data was transported to SPSS and Google Earth for statistical and spatial analysis. We then met with the women to discuss lifestyle interventions to maximise their use of their local neighbourhoods in ways that could increase their physical activity levels and improve their overall health and well-being. These interventions will be evaluated and translated into a large-scale national study if effective. Results Initial findings about patterns in the group’s use of the local urban environment will be displayed, including daily distances travelled, types of locations visited, walking levels, use of public transport, use of green spaces and use of health-related resources. Any socio-demograpahic differences found between the women will be reported. Qualitative, quantitative, and spatial/mapping data will be displayed Conclusion The benefits and limitations of the mobile website designed to collect a range of data types about human-neighbourhood interactions with implications for intervention design will be discussed.
Resumo:
Robustness to variations in environmental conditions and camera viewpoint is essential for long-term place recognition, navigation and SLAM. Existing systems typically solve either of these problems, but invariance to both remains a challenge. This paper presents a training-free approach to lateral viewpoint- and condition-invariant, vision-based place recognition. Our successive frame patch-tracking technique infers average scene depth along traverses and automatically rescales views of the same place at different depths to increase their similarity. We combine our system with the condition-invariant SMART algorithm and demonstrate place recognition between day and night, across entire 4-lane-plus-median-strip roads, where current algorithms fail.
Resumo:
To understand factors that affect brain connectivity and integrity, it is beneficial to automatically cluster white matter (WM) fibers into anatomically recognizable tracts. Whole brain tractography, based on diffusion-weighted MRI, generates vast sets of fibers throughout the brain; clustering them into consistent and recognizable bundles can be difficult as there are wide individual variations in the trajectory and shape of WM pathways. Here we introduce a novel automated tract clustering algorithm based on label fusion - a concept from traditional intensity-based segmentation. Streamline tractography generates many incorrect fibers, so our top-down approach extracts tracts consistent with known anatomy, by mapping multiple hand-labeled atlases into a new dataset. We fuse clustering results from different atlases, using a mean distance fusion scheme. We reliably extracted the major tracts from 105-gradient high angular resolution diffusion images (HARDI) of 198 young normal twins. To compute population statistics, we use a pointwise correspondence method to match, compare, and average WM tracts across subjects. We illustrate our method in a genetic study of white matter tract heritability in twins.
Resumo:
At present, the most reliable method to obtain end-user perceived quality is through subjective tests. In this paper, the impact of automatic region-of-interest (ROI) coding on perceived quality of mobile video is investigated. The evidence, which is based on perceptual comparison analysis, shows that the coding strategy improves perceptual quality. This is particularly true in low bit rate situations. The ROI detection method used in this paper is based on two approaches: - (1) automatic ROI by analyzing the visual contents automatically, and; - (2) eye-tracking based ROI by aggregating eye-tracking data across many users, used to both evaluate the accuracy of automatic ROI detection and the subjective quality of automatic ROI encoded video. The perceptual comparison analysis is based on subjective assessments with 54 participants, across different content types, screen resolutions, and target bit rates while comparing the two ROI detection methods. The results from the user study demonstrate that ROI-based video encoding has higher perceived quality compared to normal video encoded at a similar bit rate, particularly in the lower bit rate range.
Resumo:
An annotated check list of Ramularia species in Australia, based on re-examinations of collections deposited at BRIP, DAR and VPRI, is presented. Twenty-eight species are reported in Australia, most of them on introduced host plants. The new species Cladosporium myrtacearum, Ramularia craspediicola and R. muehlenbeckiae are described. Collections of Cladosporium uredinicola, Neoramularia karelii, Passalora perfoliati and Pseudocercospora pongamiae-pinnatae, previously deposited in Australian herbaria under 'Ramularia sp.', are newly recognised for Australia.
Resumo:
The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.
Resumo:
Clustering identities in a video is a useful task to aid in video search, annotation and retrieval, and cast identification. However, reliably clustering faces across multiple videos is challenging task due to variations in the appearance of the faces, as videos are captured in an uncontrolled environment. A person's appearance may vary due to session variations including: lighting and background changes, occlusions, changes in expression and make up. In this paper we propose the novel Local Total Variability Modelling (Local TVM) approach to cluster faces across a news video corpus; and incorporate this into a novel two stage video clustering system. We first cluster faces within a single video using colour, spatial and temporal cues; after which we use face track modelling and hierarchical agglomerative clustering to cluster faces across the entire corpus. We compare different face recognition approaches within this framework. Experiments on a news video database show that the Local TVM technique is able effectively model the session variation observed in the data, resulting in improved clustering performance, with much greater computational efficiency than other methods.
Resumo:
Simple formalized rules are proposed for automatic phonetic transcription of Tamil words into Roman script. These rules are syntax-directed and require a one-symbol look-ahead facility and hence easily automated in a digital computer. Some suggestions are also put forth for the linearization of Tamil script for handling these by modern machinery.
Resumo:
Electricity generation is vital in developed countries to power the many mechanical and electrical devices that people require. Unfortunately electricity generation is costly. Though electricity can be generated it cannot be stored efficiently. Electricity generation is also difficult to manage because exact demand is unknown from one instant to the next. A number of services are required to manage fluctuations in electricity demand, and to protect the system when frequency falls too low. A current approach is called automatic under frequency load shedding (AUFLS). This article proposes new methods for optimising AUFLS in New Zealand’s power system. The core ideas were developed during the 2015 Maths and Industry Study Group (MISG) in Brisbane, Australia. The problem has been motivated by Transpower Limited, a company that manages New Zealand’s power system and transports bulk electricity from where it is generated to where it is needed. The approaches developed in this article can be used in electrical power systems anywhere in the world.