981 resultados para Auto-identidade


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calibration of a camera system is a necessary step in any stereo metric process. It correlates all cameras to a common coordinate system by measuring the intrinsic and extrinsic parameters of each camera. Currently, manual calibration of a camera system is the only way to achieve calibration in civil engineering operations that require stereo metric processes (photogrammetry, videogrammetry, vision based asset tracking, etc). This type of calibration however is time-consuming and labor-intensive. Furthermore, in civil engineering operations, camera systems are exposed to open, busy sites. In these conditions, the position of presumably stationary cameras can easily be changed due to external factors such as wind, vibrations or due to an unintentional push/touch from personnel on site. In such cases manual calibration must be repeated. In order to address this issue, several self-calibration algorithms have been proposed. These algorithms use Projective Geometry, Absolute Conic and Kruppa Equations and variations of these to produce processes that achieve calibration. However, most of these methods do not consider all constraints of a camera system such as camera intrinsic constraints, scene constraints, camera motion or varying camera intrinsic properties. This paper presents a novel method that takes all constraints into consideration to auto-calibrate cameras using an image alignment algorithm originally meant for vision based tracking. In this method, image frames are taken from cameras. These frames are used to calculate the fundamental matrix that gives epipolar constraints. Intrinsic and extrinsic properties of cameras are acquired from this calculation. Test results are presented in this paper with recommendations for further improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile video and gaming are now widely used, and delivery of a glass-free 3D experience is of both research and development interest. The key drawbacks of a conventional 3D display based on a static lenticular lenslet array and parallax barriers are low resolution, limited viewing angle and reduced brightness, mainly because of the need of multiple-pixels for each object point. This study describes the concept and performance of pixel-level cylindrical liquid crystal (LC) lenses, which are designed to steer light to the left and right eye sequentially to form stereo parallax. The width of the LC lenses can be as small as 20-30 μm, so that the associated auto-stereoscopic display will have the same resolution as the 2D display panel in use. Such a thin sheet of tunable LC lens array can be applied directly on existing mobile displays, and can deliver 3D viewing experience while maintaining 2D viewing capability. Transparent electrodes were laser patterned to achieve the single pixel lens resolution, and a high birefringent LC material was used to realise a large diffraction angle for a wide field of view. Simulation was carried out to model the intensity profile at the viewing plane and optimise the lens array based on the measured LC phase profile. The measured viewing angle and intensity profile were compared with the simulation results. © 2014 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3(rd) order complex band-pass filter (BPF) with auto-tuning architecture is proposed in this paper. It is implemented in 0.18um standard CMOS technology. The complex filter is centered at 4.092MHz with bandwidth of 2.4MHz. The in-band 3(rd) order harmonic input intercept point (IIP3) is larger than 16.2dBm, with 50 Omega as the source impedance. The input referred noise is about 80uV(rms). The RC tuning is based on Binary Search Algorithm (BSA) with tuning accuracy of 3%. The chip area of the tuning system is 0.28 x 0.22 mm(2), less than 1/8 of that of the main-filter which is 0.92 x 0.59 mm(2). After tuning is completed, the tuning system will be turned off automatically to save power and to avoid interference. The complex filter consumes 2.6mA with a 1.8V power supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3(rd) order complex band-pass filter (BPF) with auto-tuning architecture is proposed in this paper. It is implemented in 0.18 mu m standard CMOS technology. The complex filter is centered at 4.092MHz with bandwidth of 2.4MHz. The in-band 3(rd) order harmonic input intercept point (IIP3) is larger than 19dBm, with 50 Omega as the source impedance. The input referred noise is about 80 mu V-rms. The RC tuning is based on Binary Search Algorithm (BSA) with tuning accuracy of 3%. The chip area of the tuning system is 0.28x0.22mm(2), less than 1/8 of that of the main-filter which is 0.92x0.59mm(2). After tuning is completed, the tuning system will be turned off automatically to save power and to avoid interference. The complex filter consumes 2.6mA with a 1.8V power supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymmetric MOSFET-C band-pass filter(BPF)with on chip charge pump auto-tuning is presented.It is implemented in UMC (United Manufacturing Corporation)0.18μm CMOS process technology. The filter system with auto-tuning uses a master-slave technique for continuous tuning in which the charge pump OUtputs 2.663 V, much higher than the power supply voltage, to improve the linearity of the filter. The main filter with third order low-pass and second order high-pass properties is an asymmetric band-pass filter with bandwidth of 2.730-5.340 MHz. The in-band third order harmonic input intercept point(HP3) is 16.621 dBm,wim 50 Ω as the source impedance. The input referred noise iS about 47.455μVrms. The main filter dissipates 3.528 mW while the auto-tuning system dissipates 2.412 mW from a 1.8 V power supply. The filter with the auto-tuning system occupies 0.592 mm~2 and it can be utilized in GPS (global positioning system)and Bluetooth systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MnZn-ferrite/SiO2 nanocomposites with different silica content were successfully fabricated by a novel modified sol-gel auto-combustion method using citric acid as a chelating agent and tetraethyl orthosilicate (TEOS) as the source of silica matrix. The auto-combustion nature of the dried gel was studied by X-ray diffraction (XRD), Infrared spectra (IR), thermogravimetry (TG) and differential thermal analysis (DTA). Transmission electron microscope (TEM) observation shows that the MnZn-ferrite particles are homogeneously dispersed in silica matrix after auto-combustion of the dried gels. The magnetic properties vary with the silica content. The transition from the ferromagnetic to paramagnetic state is observed by Mossbauer spectra measurement with the increasing silica content. Vibrating sample magnetometer (VSM) shows that the magnetic properties of Mn0.65Zn0.35Fe2O4/SiO2 nanocomposites strongly depend on the silica content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of nanocrystalline W-type hexaferrites Ba(CoxZn1-x)(2)Fe16O27 powders by sol-gel auto-combustion method has been investigated. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). The results reveal that the dried gel exhibits auto-combustion behavior. After combustion, pure nanocrystalline W-type hexaferrite phase starts to appear at the calcination temperature of 800 degrees C. The crystallinity and the grain size increase at higher temperature. The saturation magnetization and coercivity clearly depend on calcination temperature and Co content X.