977 resultados para Artificial groundwater recharge.
Resumo:
The use of artificial neural networks (ANNs) to identify and control induction machines is proposed. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics, and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Both systems are inherently adaptive as well as self-commissioning. The current controller is a completely general nonlinear controller which can be used together with any drive algorithm. Various advantages of these control schemes over conventional schemes are cited, and the combined speed and current control scheme is compared with the standard vector control scheme
Resumo:
This paper proposes the use of artificial neural networks (ANNs) to identify and control an induction machine. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics; and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Various advantages of these control schemes over other conventional schemes are cited and the performance of the combined speed and current control scheme is compared with that of the standard vector control scheme
Resumo:
Groundwater is increasingly recognised as an important yet vulnerable natural resource, and a key consideration in water cycle management. However, communication of sub-surface water system behaviour, as an important part of encouraging better water management, is visually difficult. Modern 3D visualisation techniques can be used to effectively communicate these complex behaviours to engage and inform community stakeholders. Most software developed for this purpose is expensive and requires specialist skills. The Groundwater Visualisation System (GVS) developed by QUT integrates a wide range of surface and sub-surface data, to produce a 3D visualisation of the behaviour, structure and connectivity of groundwater/surface water systems. Surface data (elevation, surface water, land use, vegetation and geology) and data collected from boreholes (bore locations and subsurface geology) are combined to visualise the nature, structure and connectivity of groundwater/surface water systems. Time-series data (water levels, groundwater quality, rainfall, stream flow and groundwater abstraction) is displayed as an animation within the 3D framework, or graphically, to show water system condition changes over time. GVS delivers an interactive, stand-alone 3D Visualisation product that can be used in a standard PC environment. No specialised training or modelling skills are required. The software has been used extensively in the SEQ region to inform and engage both water managers and the community alike. Examples will be given of GVS visualisations developed in areas where there have been community concerns around groundwater over-use and contamination.
Resumo:
The upper Condamine River in southern Queensland has formed extensive alluvial deposits which have been used for irrigation of cotton crops for over 40 years. Due to excessive use and long term drought conditions these groundwater resources are under substantial threat. This condition is now recognised by all stakeholders, and Qld Department of Environment and Resource Management (DERM) are currently undertaking a water planning process for the Central Condamine Alluvium with water users and other stakeholders. DERM aims to effectively demonstrate the character of the groundwater system and its current status, and notably the continued long-term drawdown of the watertable. It was agreed that 3D visualisation was an ideal tool to achieve this. The Groundwater Visualisation System (GVS) developed at QUT was utilised and the visualisation model developed in conjunction with DERM to achieve a planning-management tool for this particular application
Resumo:
In this paper we discuss an advanced, 3D groundwater visualisation and animation system that allows scientists, government agencies and community groups to better understand the groundwater processes that effect community planning and decision-making. The system is unique in that it has been designed to optimise community engagement. Although it incorporates a powerful visualisation engine, this open-source system can be freely distributed and boasts a simple user interface allowing individuals to run and investigate the models on their own PCs and gain intimate knowledge of the groundwater systems. The initial version of the Groundwater Visualisation System (GVS v1.0), was developed from a coastal delta setting (Bundaberg, QLD), and then applied to a basalt catchment area (Obi Obi Creek, Maleny, QLD). Several major enhancements have been developed to produce higher quality visualisations, including display of more types of data, support for larger models and improved user interaction. The graphics and animation capabilities have also been enhanced, notably the display of boreholes, depth logs and time-series water level surfaces. The GVS software remains under continual development and improvement
Resumo:
The Tamborine Mt area is a popular residential and tourist area in the Gold Coast hinterland, SE Qld. The 15km2 area occurs on elevated remnant Tertiary Basalts of the Beechmont Group, which comprise a number of mappable flow units originally derived from the Tweed volcanic centre to the south. The older Albert Basalt (Tertiary), which underlies the Beechmont Basalt at the southern end of the investigation area, is thought to be derived from the Focal Peak volcanic centre to the south west. The Basalts contain a locally significant ‘un-declared’ groundwater resource, which is utilised by the Tamborine Mt community for: • domestic purposes to supplement rainwater tank supplies, • commercial scale horticulture and • commercial export off-Mountain for bottled water. There is no reticulated water supply, and all waste water is treated on-site through domestic scale WTPs. Rainforest and other riparian ecosystems that attract residents and tourist dollars to the area, are also reliant on the groundwater that discharges to springs and surface streams on and around the plateau. Issues regarding a lack of compiled groundwater information, groundwater contamination, and groundwater sustainability are being investigated by QUT, utilising funding provided by the Federal Government’s ‘Caring for our Country’ programme through SEQ Catchments Ltd. The objectives of the two year project, which started in April 2009, are to: • Characterise the nature and condition of groundwater / surface water systems in the Tamborine Mountain area in terms of the issues being raised; • Engage and build capacity within the community to source local knowledge, encourage participation, raise awareness and improve understanding of the impacts of land and water use; • Develop a stand-alone 3D Visualisation model for dissemination into the community and use as a communication tool.
Resumo:
Verification testing of two model technologies in pilot scale to remove arsenic and antimony based on reverse osmosis and chemical coagulation/filtration systems was conducted in Spiro Tunnel Water Filtration Plant located in Park City, Utah, US. The source water was groundwater in abandoned silver mine, naturally contaminated by 60-80 ppb of arsenic and antimony below 10 ppb. This water represents one of the sources of drinking water for Park City and constitutes about 44% of the water supply. The failure to remove antimony efficiently by coagulation/filtration (only 4.4% removal rate) under design conditions is discussed in terms of the chemistry differences between Sb (III, V) and As (III, V). Removal of Sb(V) at pH > 7, using coagulation/filtration technology, requires much higher (50 to 80 times) concentration of iron (III) than As. The stronger adsorption of arsenate over a wider pH range can be explained by the fact that arsenic acid is tri-protic, whereas antimonic acid is monoprotic. This difference in properties of As(V) and Sb(V) makes antimony (V) more difficult to be efficiently removed in low concentrations of iron hydroxide and alkaline pH waters, especially in concentration of Sb < 10 ppb.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.