862 resultados para Artificial aging
Resumo:
Control Centre operators are essential to assure a good performance of Power Systems. Operators’ actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.
Resumo:
OBJECTIVE: To describe the characteristics and associated factors of the smoking habit among older adults. METHODS: A population-based study was carried out comprising 1,606 (92.2%) older adults (>60 years old) living in the Bambuí town, Southeastern Brazil in 1997. Data was obtained by means of interview and socio-demographic factors, health status, physical functioning, use of healthcare services and medication were considered. The multiple multinomial logistic regression was used to assess independent associations between smoking habits (current and former smokers) and the exploratory variables. RESULTS: The prevalence of current and past smoking was 31.4% and 40.2% among men, and 10.3% and 11.2% among women, respectively (p<0.001). Among current smokers, men consumed a larger number of cigarettes per day and started the habit earlier than women. Among men, current smoking presented independent and negative association with age (>80 years) and schooling (>8 years) and positive association with poor health perception and not being married. Among women, independent and negative associations with current smoking were observed for age (75-79 and >80 years) and schooling (4-7 and >8 years). CONCLUSIONS: Smoking was a public health concern among older adults in the studied community, particularly for men. Yet, in a low schooling population, a slightly higher level was a protective factor against smoking for both men and women. Programs for reducing smoking in the elderly population should take these findings into consideration.
Resumo:
EPIA 2013 - XVI Portuguese Conference on Artificial Intelligence Angra do Heroísmo, Azores, Portugal, 9 – 12 September.
Resumo:
Tese de Doutoramento, Geografia (Ordenamento do Território), 25 de Novembro de 2013, Universidade dos Açores.
Resumo:
Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Decision making in any environmental domain is a complex and demanding activity, justifying the development of dedicated decision support systems. Every decision is confronted with a large variety and amount of constraints to satisfy as well as contradictory interests that must be sensibly accommodated. The first stage of a project evaluation is its submission to the relevant group of public (and private) agencies. The individual role of each agency is to verify, within its domain of competence, the fulfilment of the set of applicable regulations. The scope of the involved agencies is wide and ranges from evaluation abilities on the technical or economical domains to evaluation competences on the environmental or social areas. The second project evaluation stage involves the gathering of the recommendations of the individual agencies and their justified merge to produce the final conclusion. The incorporation and accommodation of the consulted agencies opinions is of extreme importance: opinions may not only differ, but can be interdependent, complementary, irreconcilable or, simply, independent. The definition of adequate methodologies to sensibly merge, whenever possible, the existing perspectives while preserving the overall legality of the system, will lead to the making of sound justified decisions. The proposed Environmental Decision Support System models the project evaluation activity and aims to assist developers in the selection of adequate locations for their projects, guaranteeing their compliance with the applicable regulations.
Resumo:
Background: Complex medication regimens may adversely affect compliance and treatment outcomes. Complexity can be assessed with the medication regimen complexity index (MRCI), which has proved to be a valid, reliable tool, with potential uses in both practice and research. Objective: To use the MRCI to assess medication regimen complexity in institutionalized elderly people. Setting: Five nursing homes in mainland Portugal. Methods: A descriptive, cross-sectional study of institutionalized elderly people (n = 415) was performed from March to June 2009, including all inpatients aged 65 and over taking at least one medication per day. Main outcome measure: Medication regimen complexity index. Results: The mean age of the sample was 83.9 years (±6.6 years), and 60.2 % were women. The elderly patients were taking a large number of drugs, with 76.6 % taking more than five medications per day. The average medication regimen complexity was 18.2 (±SD = 9.6), and was higher in the females (p < 0.001). The most decisive factors contributing to the complexity were the number of drugs and dosage frequency. In regimens with the same number of medications, schedule was the most relevant factor in the final score (r = 0.922), followed by pharmaceutical forms (r = 0.768) and additional instructions (r = 0.742). Conclusion: Medication regimen complexity proved to be high. There is certainly potential for the pharmacist's intervention to reduce it as part as the medication review routine in all the patients.
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
Resumo:
This paper presents several forecasting methodologies based on the application of Artificial Neural Networks (ANN) and Support Vector Machines (SVM), directed to the prediction of the solar radiance intensity. The methodologies differ from each other by using different information in the training of the methods, i.e, different environmental complementary fields such as the wind speed, temperature, and humidity. Additionally, different ways of considering the data series information have been considered. Sensitivity testing has been performed on all methodologies in order to achieve the best parameterizations for the proposed approaches. Results show that the SVM approach using the exponential Radial Basis Function (eRBF) is capable of achieving the best forecasting results, and in half execution time of the ANN based approaches.
Resumo:
A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems.
Resumo:
Trypanosoma cruzi parasitemia observed in immunocompromised patients (transplant or positive HIV) occurred more frequently by the artificial xenodiagnosis method (10/38) compared with hemoculture (2/38), given the same quantity of blood. Other ways of diagnosis, like mice inoculation (5/38), QBC and buffy coat (2/38), were evaluated also. This result showed the importance of the artificial xenodiagnosis. The other techniques increased only one more patient positive.
Resumo:
A novel artificial antibody for troponin T (TnT) was synthesized by molecular imprint (MI) on the surface of multiwalled carbon nanotubes (MWCNT). This was done by attaching TnT to the MWCNT surface, and filling the vacant spaces by polymerizing under mild conditions acrylamide (monomer) in N,N′-methylenebisacrylamide (cross-linker) and ammonium persulphate (initiator). After removing the template, the obtained biomaterial was able to rebind TnT and discriminate it among other interfering species. Stereochemical recognition of TnT was confirmed by the non-rebinding ability displayed by non-imprinted (NI) materials, obtained by imprinting without a template. SEM and FTIR analysis confirmed the surface modification of the MWCNT. The ability of this biomaterial to rebind TnT was confirmed by including it as electroactive compound in a PVC/plasticizer mixture coating a wire of silver, gold or titanium. Anionic slopes of 50 mV decade−1 were obtained for the gold wire coated with MI-based membranes dipped in HEPES buffer of pH 7. The limit of detection was 0.16 μg mL−1. Neither the NI-MWCNT nor the MWCNT showed the ability to recognize the template. Good selectivity was observed against creatinine, sucrose, fructose, myoglobin, sodium glutamate, thiamine and urea. The sensor was tested successfully on serum samples. It is expected that this work opens new horizons on the design of new artificial antibodies for complex protein structures.