953 resultados para Artificial Intelligence, Constraint Programming, set variables, representation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a modular, assertion-based system for verification and debugging of large logic programs, together with several interesting models for checking assertions statically in modular programs, each with different characteristics and representing different trade-offs. Our proposal is a modular and multivariant extensión of our previously proposed abstract assertion checking model and we also report on its implementation in the CiaoPP system. In our approach, the specification of the program, given by a set of assertions, may be partial, instead of the complete specification required by raditional verification systems. Also, the system can deal with properties which cannot always be determined at compile-time. As a result, the proposed system needs to work with safe approximations: all assertions proved correct are guaranteed to be valid and all errors actual errors. The use of modular, context-sensitive static analyzers also allows us to introduce a new distinction between assertions checked in a particular context or checked in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a general framework for assertion-based debugging of constraint logic programs. Assertions are linguistic constructions which allow expressing properties of programs. We define assertion schemas which allow writing (partial) specifications for constraint logic programs using quite general properties, including user-defined programs. The framework is aimed at detecting deviations of the program behavior (symptoms) with respect to the given assertions, either at compile-time or run-time. We provide techniques for using information from global analysis both to detect at compile-time assertions which do not hold in at least one of the possible executions (i.e., static symptoms) and assertions which hold for all possible executions (i.e., statically proved assertions). We also provide program transformations which introduce tests in the program for checking at run-time those assertions whose status cannot be determined at compile-time. Both the static and the dynamic checking are provably safe in the sense that all errors flagged are definite violations of the specifications. Finally, we report on an implemented instance of the assertion language and framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The agent programming landscape has been revealed as a natural framework for developing “intelligence” in AI. This can be seen from the extensive use of the agent concept in presenting (and developing) AI systems, the proliferation of agent theories, and the evolution of concepts such as agent societies (social intelligence) and coordination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some brief considerations on the role of Computational Logic in the construction of Artificial Intelligence systems and in programming in general. It does not address how the many problems in AI can be solved but, rather more modestly, tries to point out some advantages of Computational Logic as a tool for the AI scientist in his quest. It addresses the interaction between declarative and procedural views of programs (deduction and action), the impact of the intrinsic limitations of logic, the relationship with other apparently competing computational paradigms, and finally discusses implementation-related issues, such as the efficiency of current implementations and their capability for efficiently exploiting existing and future sequential and parallel hardware. The purpose of the discussion is in no way to present Computational Logic as the unique overall vehicle for the development of intelligent systems (in the firm belief that such a panacea is yet to be found) but rather to stress its strengths in providing reasonable solutions to several aspects of the task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this document is to serve as the printed material for the seminar "An Introductory Course on Constraint Logic Programming". The intended audience of this seminar are industrial programmers with a degree in Computer Science but little previous experience with constraint programming. The seminar itself has been field tested, prior to the writing of this document, with a group of the application programmers of Esprit project P23182, "VOCAL", aimed at developing an application in scheduling of field maintenance tasks in the context of an electric utility company. The contents of this paper follow essentially the flow of the seminar slides. However, there are some differences. These differences stem from our perception from the experience of teaching the seminar, that the technical aspects are the ones which need more attention and clearer explanations in the written version. Thus, this document includes more examples than those in the slides, more exercises (and the solutions to them), as well as four additional programming projects, with which we hope the reader will obtain a clearer view of the process of development and tuning of programs using CLP. On the other hand, several parts of the seminar have been taken out: those related with the account of fields and applications in which C(L)P is useful, and the enumerations of C(L)P tools available. We feel that the slides are clear enough, and that for more information on available tools, the interested reader will find more up-to-date information by browsing the Web or asking the vendors directly. More details in this direction will actually boil down to summarizing a user manual, which is not the aim of this document.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term "Logic Programming" refers to a variety of computer languages and execution models which are based on the traditional concept of Symbolic Logic. The expressive power of these languages offers promise to be of great assistance in facing the programming challenges of present and future symbolic processing applications in Artificial Intelligence, Knowledge-based systems, and many other areas of computing. The sequential execution speed of logic programs has been greatly improved since the advent of the first interpreters. However, higher inference speeds are still required in order to meet the demands of applications such as those contemplated for next generation computer systems. The execution of logic programs in parallel is currently considered a promising strategy for attaining such inference speeds. Logic Programming in turn appears as a suitable programming paradigm for parallel architectures because of the many opportunities for parallel execution present in the implementation of logic programs. This dissertation presents an efficient parallel execution model for logic programs. The model is described from the source language level down to an "Abstract Machine" level suitable for direct implementation on existing parallel systems or for the design of special purpose parallel architectures. Few assumptions are made at the source language level and therefore the techniques developed and the general Abstract Machine design are applicable to a variety of logic (and also functional) languages. These techniques offer efficient solutions to several areas of parallel Logic Programming implementation previously considered problematic or a source of considerable overhead, such as the detection and handling of variable binding conflicts in AND-Parallelism, the specification of control and management of the execution tree, the treatment of distributed backtracking, and goal scheduling and memory management issues, etc. A parallel Abstract Machine design is offered, specifying data areas, operation, and a suitable instruction set. This design is based on extending to a parallel environment the techniques introduced by the Warren Abstract Machine, which have already made very fast and space efficient sequential systems a reality. Therefore, the model herein presented is capable of retaining sequential execution speed similar to that of high performance sequential systems, while extracting additional gains in speed by efficiently implementing parallel execution. These claims are supported by simulations of the Abstract Machine on sample programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probabilistic graphical models are a huge research field in artificial intelligence nowadays. The scope of this work is the study of directed graphical models for the representation of discrete distributions. Two of the main research topics related to this area focus on performing inference over graphical models and on learning graphical models from data. Traditionally, the inference process and the learning process have been treated separately, but given that the learned models structure marks the inference complexity, this kind of strategies will sometimes produce very inefficient models. With the purpose of learning thinner models, in this master thesis we propose a new model for the representation of network polynomials, which we call polynomial trees. Polynomial trees are a complementary representation for Bayesian networks that allows an efficient evaluation of the inference complexity and provides a framework for exact inference. We also propose a set of methods for the incremental compilation of polynomial trees and an algorithm for learning polynomial trees from data using a greedy score+search method that includes the inference complexity as a penalization in the scoring function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: A recently introduced pragmatic scheme promises to be a useful catalog of interneuron names.We sought to automatically classify digitally reconstructed interneuronal morphologies according tothis scheme. Simultaneously, we sought to discover possible subtypes of these types that might emergeduring automatic classification (clustering). We also investigated which morphometric properties weremost relevant for this classification.Materials and methods: A set of 118 digitally reconstructed interneuronal morphologies classified into thecommon basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA) interneuron types by 42 of theworld?s leading neuroscientists, quantified by five simple morphometric properties of the axon and fourof the dendrites. We labeled each neuron with the type most commonly assigned to it by the experts. Wethen removed this class information for each type separately, and applied semi-supervised clustering tothose cells (keeping the others? cluster membership fixed), to assess separation from other types and lookfor the formation of new groups (subtypes). We performed this same experiment unlabeling the cells oftwo types at a time, and of half the cells of a single type at a time. The clustering model is a finite mixtureof Gaussians which we adapted for the estimation of local (per-cluster) feature relevance. We performedthe described experiments on three different subsets of the data, formed according to how many expertsagreed on type membership: at least 18 experts (the full data set), at least 21 (73 neurons), and at least26 (47 neurons).Results: Interneurons with more reliable type labels were classified more accurately. We classified HTcells with 100% accuracy, MA cells with 73% accuracy, and CB and LB cells with 56% and 58% accuracy,respectively. We identified three subtypes of the MA type, one subtype of CB and LB types each, andno subtypes of HT (it was a single, homogeneous type). We got maximum (adapted) Silhouette widthand ARI values of 1, 0.83, 0.79, and 0.42, when unlabeling the HT, CB, LB, and MA types, respectively,confirming the quality of the formed cluster solutions. The subtypes identified when unlabeling a singletype also emerged when unlabeling two types at a time, confirming their validity. Axonal morphometricproperties were more relevant that dendritic ones, with the axonal polar histogram length in the [pi, 2pi) angle interval being particularly useful.Conclusions: The applied semi-supervised clustering method can accurately discriminate among CB, HT, LB, and MA interneuron types while discovering potential subtypes, and is therefore useful for neuronal classification. The discovery of potential subtypes suggests that some of these types are more heteroge-neous that previously thought. Finally, axonal variables seem to be more relevant than dendritic ones fordistinguishing among the CB, HT, LB, and MA interneuron types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta tesis se estudia la representación, modelado y comparación de colecciones mediante el uso de ontologías en el ámbito de la Web Semántica. Las colecciones, entendidas como agrupaciones de objetos o elementos con entidad propia, son construcciones que aparecen frecuentemente en prácticamente todos los dominios del mundo real, y por tanto, es imprescindible disponer de conceptualizaciones de estas estructuras abstractas y de representaciones de estas conceptualizaciones en los sistemas informáticos, que definan adecuadamente su semántica. Mientras que en muchos ámbitos de la Informática y la Inteligencia Artificial, como por ejemplo la programación, las bases de datos o la recuperación de información, las colecciones han sido ampliamente estudiadas y se han desarrollado representaciones que responden a multitud de conceptualizaciones, en el ámbito de la Web Semántica, sin embargo, su estudio ha sido bastante limitado. De hecho hasta la fecha existen pocas propuestas de representación de colecciones mediante ontologías, y las que hay sólo cubren algunos tipos de colecciones y presentan importantes limitaciones. Esto impide la representación adecuada de colecciones y dificulta otras tareas comunes como la comparación de colecciones, algo crítico en operaciones habituales como las búsquedas semánticas o el enlazado de datos en la Web Semántica. Para solventar este problema esta tesis hace una propuesta de modelización de colecciones basada en una nueva clasificación de colecciones de acuerdo a sus características estructurales (homogeneidad, unicidad, orden y cardinalidad). Esta clasificación permite definir una taxonomía con hasta 16 tipos de colecciones distintas. Entre otras ventajas, esta nueva clasificación permite aprovechar la semántica de las propiedades estructurales de cada tipo de colección para realizar comparaciones utilizando las funciones de similitud y disimilitud más apropiadas. De este modo, la tesis desarrolla además un nuevo catálogo de funciones de similitud para las distintas colecciones, donde se han recogido las funciones de (di)similitud más conocidas y también algunas nuevas. Esta propuesta se ha implementado mediante dos ontologías paralelas, la ontología E-Collections, que representa los distintos tipos de colecciones de la taxonomía y su axiomática, y la ontología SIMEON (Similarity Measures Ontology) que representa los tipos de funciones de (di)similitud para cada tipo de colección. Gracias a estas ontologías, para comparar dos colecciones, una vez representadas como instancias de la clase más apropiada de la ontología E-Collections, automáticamente se sabe qué funciones de (di)similitud de la ontología SIMEON pueden utilizarse para su comparación. Abstract This thesis studies the representation, modeling and comparison of collections in the Semantic Web using ontologies. Collections, understood as groups of objects or elements with their own identities, are constructions that appear frequently in almost all areas of the real world. Therefore, it is essential to have conceptualizations of these abstract structures and representations of these conceptualizations in computer systems, that define their semantic properly. While in many areas of Computer Science and Artificial Intelligence, such as Programming, Databases or Information Retrieval, the collections have been extensively studied and there are representations that match many conceptualizations, in the field Semantic Web, however, their study has been quite limited. In fact, there are few representations of collections using ontologies so far, and they only cover some types of collections and have important limitations. This hinders a proper representation of collections and other common tasks like comparing collections, something critical in usual operations such as semantic search or linking data on the Semantic Web. To solve this problem this thesis makes a proposal for modelling collections based on a new classification of collections according to their structural characteristics (homogeneity, uniqueness, order and cardinality). This classification allows to define a taxonomy with up to 16 different types of collections. Among other advantages, this new classification can leverage the semantics of the structural properties of each type of collection to make comparisons using the most appropriate (dis)similarity functions. Thus, the thesis also develops a new catalog of similarity functions for the different types of collections. This catalog contains the most common (dis)similarity functions as well as new ones. This proposal is implemented through two parallel ontologies, the E-Collections ontology that represents the different types of collections in the taxonomy and their axiomatic, and the SIMEON ontology (Similarity Measures Ontology) that represents the types of (dis)similarity functions for each type of collection. Thanks to these ontologies, to compare two collections, once represented as instances of the appropriate class of E-Collections ontology, we can know automatically which (dis)similarity functions of the SIMEON ontology are suitable for the comparison. Finally, the feasibility and usefulness of this modeling and comparison of collections proposal is proved in the field of oenology, applying both E-Collections and SIMEON ontologies to the representation and comparison of wines with the E-Baco ontology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El empleo de refuerzos de FRP en vigas de hormigón armado es cada vez más frecuente por sus numerosas ventajas frente a otros métodos más tradicionales. Durante los últimos años, la técnica FRP-NSM, consistente en introducir barras de FRP sobre el recubrimiento de una viga de hormigón, se ha posicionado como uno de los mejores métodos de refuerzo y rehabilitación de estructuras de hormigón armado, tanto por su facilidad de montaje y mantenimiento, como por su rendimiento para aumentar la capacidad resistente de dichas estructuras. Si bien el refuerzo a flexión ha sido ampliamente desarrollado y estudiado hasta la fecha, no sucede lo mismo con el refuerzo a cortante, debido principalmente a su gran complejidad. Sin embargo, se debería dedicar más estudio a este tipo de refuerzo si se pretenden conservar los criterios de diseño en estructuras de hormigón armado, los cuales están basados en evitar el fallo a cortante por sus consecuencias catastróficas Esta ausencia de información y de normativa es la que justifica esta tesis doctoral. En este pro-yecto se van a desarrollar dos metodologías alternativas, que permiten estimar la capacidad resistente de vigas de hormigón armado, reforzadas a cortante mediante la técnica FRP-NSM. El primer método aplicado consiste en la implementación de una red neuronal artificial capaz de predecir adecuadamente la resistencia a cortante de vigas reforzadas con este método a partir de experimentos anteriores. Asimismo, a partir de la red se han llevado a cabo algunos estudios a fin de comprender mejor la influencia real de algunos parámetros de la viga y del refuerzo sobre la resistencia a cortante con el propósito de lograr diseños más seguros de este tipo de refuerzo. Una configuración óptima de la red requiere discriminar adecuadamente de entre los numerosos parámetros (geométricos y de material) que pueden influir en el compor-tamiento resistente de la viga, para lo cual se han llevado a cabo diversos estudios y pruebas. Mediante el segundo método, se desarrolla una ecuación de proyecto que permite, de forma sencilla, estimar la capacidad de vigas reforzadas a cortante con FRP-NSM, la cual podría ser propuesta para las principales guías de diseño. Para alcanzar este objetivo, se plantea un pro-blema de optimización multiobjetivo a partir de resultados de ensayos experimentales llevados a cabo sobre vigas de hormigón armado con y sin refuerzo de FRP. El problema multiobjetivo se resuelve mediante algoritmos genéticos, en concreto el algoritmo NSGA-II, por ser más apropiado para problemas con varias funciones objetivo que los métodos de optimización clásicos. Mediante una comparativa de las predicciones realizadas con ambos métodos y de los resulta-dos de ensayos experimentales se podrán establecer las ventajas e inconvenientes derivadas de la aplicación de cada una de las dos metodologías. Asimismo, se llevará a cabo un análisis paramétrico con ambos enfoques a fin de intentar determinar la sensibilidad de aquellos pa-rámetros más sensibles a este tipo de refuerzo. Finalmente, se realizará un análisis estadístico de la fiabilidad de las ecuaciones de diseño deri-vadas de la optimización multiobjetivo. Con dicho análisis se puede estimar la capacidad resis-tente de una viga reforzada a cortante con FRP-NSM dentro de un margen de seguridad espe-cificado a priori. ABSTRACT The use of externally bonded (EB) fibre-reinforced polymer (FRP) composites has gained acceptance during the last two decades in the construction engineering community, particularly in the rehabilitation of reinforced concrete (RC) structures. Currently, to increase the shear resistance of RC beams, FRP sheets are externally bonded (EB-FRP) and applied on the external side surface of the beams to be strengthened with different configurations. Of more recent application, the near-surface mounted FRP bar (NSM-FRP) method is another technique successfully used to increase the shear resistance of RC beams. In the NSM method, FRP rods are embedded into grooves intentionally prepared in the concrete cover of the side faces of RC beams. While flexural strengthening has been widely developed and studied so far, the same doesn´t occur to shearing strength mainly due to its great complexity. Nevertheless, if design criteria are to be preserved more research should be done to this sort of strength, which are based on avoiding shear failure and its catastrophic consequences. However, in spite of this, accurately calculating the shear capacity of FRP shear strengthened RC beams remains a complex challenge that has not yet been fully resolved due to the numerous variables involved in the procedure. The objective of this Thesis is to develop methodologies to evaluate the capacity of FRP shear strengthened RC beams by dealing with the problem from a different point of view to the numerical modeling approach by using artificial intelligence techniques. With this purpose two different approaches have been developed: one concerned with the use of artificial neural networks and the other based on the implementation of an optimization approach developed jointly with the use of artificial neural networks (ANNs) and solved with genetic algorithms (GAs). With these approaches some of the difficulties concerned regarding the numerical modeling can be overcome. As an alternative tool to conventional numerical techniques, neural networks do not provide closed form solutions for modeling problems but do, however, offer a complex and accurate solution based on a representative set of historical examples of the relationship. Furthermore, they can adapt solutions over time to include new data. On the other hand, as a second proposal, an optimization approach has also been developed to implement simple yet accurate shear design equations for this kind of strengthening. This approach is developed in a multi-objective framework by considering experimental results of RC beams with and without NSM-FRP. Furthermore, the results obtained with the previous scheme based on ANNs are also used as a filter to choose the parameters to include in the design equations. Genetic algorithms are used to solve the optimization problem since they are especially suitable for solving multi-objective problems when compared to standard optimization methods. The key features of the two proposed procedures are outlined and their performance in predicting the capacity of NSM-FRP shear strengthened RC beams is evaluated by comparison with results from experimental tests and with predictions obtained using a simplified numerical model. A sensitivity study of the predictions of both models for the input parameters is also carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of integrating multiagent systems and virtual environments has not been exploited to its whole extent. This paper proposes a model based on grammars, called Minerva, to construct complex virtual environments that integrate the features of agents. A virtual world is described as a set of dynamic and static elements. The static part is represented by a sequence of primitives and transformations and the dynamic elements by a series of agents. Agent activation and communication is achieved using events, created by the so-called event generators. The grammar defines a descriptive language with a simple syntax and a semantics, defined by functions. The semantics functions allow the scene to be displayed in a graphics device, and the description of the activities of the agents, including artificial intelligence algorithms and reactions to physical phenomena. To illustrate the use of Minerva, a practical example is presented: a simple robot simulator that considers the basic features of a typical robot. The result is a functional simple simulator. Minerva is a reusable, integral, and generic system, which can be easily scaled, adapted, and improved. The description of the virtual scene is independent from its representation and the elements that it interacts with.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06