951 resultados para Array Signal Processing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, signal processing techniques are used to improve the quality of image based on multi-element synthetic aperture techniques. Using several apodization functions to obtain different side lobes distribution, a polarity function and a threshold criterium are used to develop an image compounding technique. The spatial diversity is increased using an additional array, which generates complementary information about the defects, improving the results of the proposed algorithm and producing high resolution and contrast images. The inspection of isotropic plate-like structures using linear arrays and Lamb waves is presented. Experimental results are shown for a 1-mm-thick isotropic aluminum plate with artificial defects using linear arrays formed by 30 piezoelectric elements, with the low dispersion symmetric mode S0 at the frequency of 330 kHz. © 2011 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To analyze the components of the acoustic signal of swallowing using a specific software. Methods: Fourteen healthy subjects ranging in age from 20 to 50 years (mean age 31±10 years), were evaluated. Data collection consisted on the simultaneous capture of the swallowing audio with a microphone and of the swallowing videofluoroscopic image. The bursts of the swallowing acoustic signal were identified and their duration and the interval between them were later analyzed using a specific software, which allowed the simultaneous analyses between the acoustic wave and the videofluoroscopic image. Results: Three burst components were identified in most of the swallows evaluated. The first burst presented mean time of 87.3 milliseconds (ms) for water and 78.2 for the substance. The second burst presented mean time of 112.9 ms for water and 85.5 for the pasty substance. The mean interval between first and second burst was 82.1 ms for water and 95.3 ms for the pasty consistency, and between second and third burst was 339.8 ms for water and 322.0 ms for the pasty consistency. Conclusion: The software allowed the visualization of three bursts during the swallowing of healthy individuals, and showed that the swallowing signal in normal subjects is highly variable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oral administration is the most convenient route for drug therapy. The knowledge of the gastrointestinal transit and specific site for drug delivery is a prerequisite for development of dosage forms. The aim of this work was to demonstrate that is possible to monitor the disintegration process of film-coated magnetic tablets by multi-sensor alternate current Biosusceptometry (ACB) in vivo and in vitro. This method is based on the recording of signals produced by the magnetic tablet using a seven sensors array and signal-processing techniques. The disintegration was confirmed by signals analysis in healthy human volunteers' measurements and in vitro experiments. Results showed that ACB is efficient to characterize the disintegration of dosage forms in the stomach, being a research tool for the development of new pharmaceutical dosage forms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability to transmit and amplify weak signals is fundamental to signal processing of artificial devices in engineering. Using a multilayer feedforward network of coupled double-well oscillators as well as Fitzhugh-Nagumo oscillators, we here investigate the conditions under which a weak signal received by the first layer can be transmitted through the network with or without amplitude attenuation. We find that the coupling strength and the nodes' states of the first layer act as two-state switches, which determine whether the transmission is significantly enhanced or exponentially decreased. We hope this finding is useful for designing artificial signal amplifiers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

I moderni sistemi embedded sono equipaggiati con risorse hardware che consentono l’esecuzione di applicazioni molto complesse come il decoding audio e video. La progettazione di simili sistemi deve soddisfare due esigenze opposte. Da un lato è necessario fornire un elevato potenziale computazionale, dall’altro bisogna rispettare dei vincoli stringenti riguardo il consumo di energia. Uno dei trend più diffusi per rispondere a queste esigenze opposte è quello di integrare su uno stesso chip un numero elevato di processori caratterizzati da un design semplificato e da bassi consumi. Tuttavia, per sfruttare effettivamente il potenziale computazionale offerto da una batteria di processoriè necessario rivisitare pesantemente le metodologie di sviluppo delle applicazioni. Con l’avvento dei sistemi multi-processore su singolo chip (MPSoC) il parallel programming si è diffuso largamente anche in ambito embedded. Tuttavia, i progressi nel campo della programmazione parallela non hanno mantenuto il passo con la capacità di integrare hardware parallelo su un singolo chip. Oltre all’introduzione di multipli processori, la necessità di ridurre i consumi degli MPSoC comporta altre soluzioni architetturali che hanno l’effetto diretto di complicare lo sviluppo delle applicazioni. Il design del sottosistema di memoria, in particolare, è un problema critico. Integrare sul chip dei banchi di memoria consente dei tempi d’accesso molto brevi e dei consumi molto contenuti. Sfortunatamente, la quantità di memoria on-chip che può essere integrata in un MPSoC è molto limitata. Per questo motivo è necessario aggiungere dei banchi di memoria off-chip, che hanno una capacità molto maggiore, come maggiori sono i consumi e i tempi d’accesso. La maggior parte degli MPSoC attualmente in commercio destina una parte del budget di area all’implementazione di memorie cache e/o scratchpad. Le scratchpad (SPM) sono spesso preferite alle cache nei sistemi MPSoC embedded, per motivi di maggiore predicibilità, minore occupazione d’area e – soprattutto – minori consumi. Per contro, mentre l’uso delle cache è completamente trasparente al programmatore, le SPM devono essere esplicitamente gestite dall’applicazione. Esporre l’organizzazione della gerarchia di memoria ll’applicazione consente di sfruttarne in maniera efficiente i vantaggi (ridotti tempi d’accesso e consumi). Per contro, per ottenere questi benefici è necessario scrivere le applicazioni in maniera tale che i dati vengano partizionati e allocati sulle varie memorie in maniera opportuna. L’onere di questo compito complesso ricade ovviamente sul programmatore. Questo scenario descrive bene l’esigenza di modelli di programmazione e strumenti di supporto che semplifichino lo sviluppo di applicazioni parallele. In questa tesi viene presentato un framework per lo sviluppo di software per MPSoC embedded basato su OpenMP. OpenMP è uno standard di fatto per la programmazione di multiprocessori con memoria shared, caratterizzato da un semplice approccio alla parallelizzazione tramite annotazioni (direttive per il compilatore). La sua interfaccia di programmazione consente di esprimere in maniera naturale e molto efficiente il parallelismo a livello di loop, molto diffuso tra le applicazioni embedded di tipo signal processing e multimedia. OpenMP costituisce un ottimo punto di partenza per la definizione di un modello di programmazione per MPSoC, soprattutto per la sua semplicità d’uso. D’altra parte, per sfruttare in maniera efficiente il potenziale computazionale di un MPSoC è necessario rivisitare profondamente l’implementazione del supporto OpenMP sia nel compilatore che nell’ambiente di supporto a runtime. Tutti i costrutti per gestire il parallelismo, la suddivisione del lavoro e la sincronizzazione inter-processore comportano un costo in termini di overhead che deve essere minimizzato per non comprometterre i vantaggi della parallelizzazione. Questo può essere ottenuto soltanto tramite una accurata analisi delle caratteristiche hardware e l’individuazione dei potenziali colli di bottiglia nell’architettura. Una implementazione del task management, della sincronizzazione a barriera e della condivisione dei dati che sfrutti efficientemente le risorse hardware consente di ottenere elevate performance e scalabilità. La condivisione dei dati, nel modello OpenMP, merita particolare attenzione. In un modello a memoria condivisa le strutture dati (array, matrici) accedute dal programma sono fisicamente allocate su una unica risorsa di memoria raggiungibile da tutti i processori. Al crescere del numero di processori in un sistema, l’accesso concorrente ad una singola risorsa di memoria costituisce un evidente collo di bottiglia. Per alleviare la pressione sulle memorie e sul sistema di connessione vengono da noi studiate e proposte delle tecniche di partizionamento delle strutture dati. Queste tecniche richiedono che una singola entità di tipo array venga trattata nel programma come l’insieme di tanti sotto-array, ciascuno dei quali può essere fisicamente allocato su una risorsa di memoria differente. Dal punto di vista del programma, indirizzare un array partizionato richiede che ad ogni accesso vengano eseguite delle istruzioni per ri-calcolare l’indirizzo fisico di destinazione. Questo è chiaramente un compito lungo, complesso e soggetto ad errori. Per questo motivo, le nostre tecniche di partizionamento sono state integrate nella l’interfaccia di programmazione di OpenMP, che è stata significativamente estesa. Specificamente, delle nuove direttive e clausole consentono al programmatore di annotare i dati di tipo array che si vuole partizionare e allocare in maniera distribuita sulla gerarchia di memoria. Sono stati inoltre sviluppati degli strumenti di supporto che consentono di raccogliere informazioni di profiling sul pattern di accesso agli array. Queste informazioni vengono sfruttate dal nostro compilatore per allocare le partizioni sulle varie risorse di memoria rispettando una relazione di affinità tra il task e i dati. Più precisamente, i passi di allocazione nel nostro compilatore assegnano una determinata partizione alla memoria scratchpad locale al processore che ospita il task che effettua il numero maggiore di accessi alla stessa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is the process of characterization for existing civil structures that proposes for damage detection and structural identification. It's based firstly on the collection of data that are inevitably affected by noise. In this work a procedure to denoise the measured acceleration signal is proposed, based on EMD-thresholding techniques. Moreover the velocity and displacement responses are estimated, starting from measured acceleration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Beamforming entails joint processing of multiple signals received or transmitted by an array of antennas. This thesis addresses the implementation of beamforming in two distinct systems, namely a distributed network of independent sensors, and a broad-band multi-beam satellite network. With the rising popularity of wireless sensors, scientists are taking advantage of the flexibility of these devices, which come with very low implementation costs. Simplicity, however, is intertwined with scarce power resources, which must be carefully rationed to ensure successful measurement campaigns throughout the whole duration of the application. In this scenario, distributed beamforming is a cooperative communication technique, which allows nodes in the network to emulate a virtual antenna array seeking power gains in the order of the size of the network itself, when required to deliver a common message signal to the receiver. To achieve a desired beamforming configuration, however, all nodes in the network must agree upon the same phase reference, which is challenging in a distributed set-up where all devices are independent. The first part of this thesis presents new algorithms for phase alignment, which prove to be more energy efficient than existing solutions. With the ever-growing demand for broad-band connectivity, satellite systems have the great potential to guarantee service where terrestrial systems can not penetrate. In order to satisfy the constantly increasing demand for throughput, satellites are equipped with multi-fed reflector antennas to resolve spatially separated signals. However, incrementing the number of feeds on the payload corresponds to burdening the link between the satellite and the gateway with an extensive amount of signaling, and to possibly calling for much more expensive multiple-gateway infrastructures. This thesis focuses on an on-board non-adaptive signal processing scheme denoted as Coarse Beamforming, whose objective is to reduce the communication load on the link between the ground station and space segment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assessment of the integrity of structural components is of great importance for aerospace systems, land and marine transportation, civil infrastructures and other biological and mechanical applications. Guided waves (GWs) based inspections are an attractive mean for structural health monitoring. In this thesis, the study and development of techniques for GW ultrasound signal analysis and compression in the context of non-destructive testing of structures will be presented. In guided wave inspections, it is necessary to address the problem of the dispersion compensation. A signal processing approach based on frequency warping was adopted. Such operator maps the frequencies axis through a function derived by the group velocity of the test material and it is used to remove the dependence on the travelled distance from the acquired signals. Such processing strategy was fruitfully applied for impact location and damage localization tasks in composite and aluminum panels. It has been shown that, basing on this processing tool, low power embedded system for GW structural monitoring can be implemented. Finally, a new procedure based on Compressive Sensing has been developed and applied for data reduction. Such procedure has also a beneficial effect in enhancing the accuracy of structural defects localization. This algorithm uses the convolutive model of the propagation of ultrasonic guided waves which takes advantage of a sparse signal representation in the warped frequency domain. The recovery from the compressed samples is based on an alternating minimization procedure which achieves both an accurate reconstruction of the ultrasonic signal and a precise estimation of waves time of flight. Such information is used to feed hyperbolic or elliptic localization procedures, for accurate impact or damage localization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The upgrade of the Mainz Mikrotron (MAMI) electron accelerator facility in 2007 which raised the beam energy up to 1.5,GeV, gives the opportunity to study strangeness production channels through electromagnetic process. The Kaon Spectrometer (KAOS) managed by the A1 Collaboration, enables the efficient detection of the kaons associated with strangeness electroproduction. Used as a single arm spectrometer, it can be combined with the existing high-resolution spectrometers for exclusive measurements in the kinematic domain accessible to them.rnrnFor studying hypernuclear production in the ^A Z(e,e'K^+) _Lambda ^A(Z-1) reaction, the detection of electrons at very forward angles is needed. Therefore, the use of KAOS as a double-arm spectrometer for detection of kaons and the electrons at the same time is mandatory. Thus, the electron arm should be provided with a new detector package, with high counting rate capability and high granularity for a good spatial resolution. To this end, a new state-of-the-art scintillating fiber hodoscope has been developed as an electron detector.rnrnThe hodoscope is made of two planes with a total of 18432 scintillating double-clad fibers of 0.83 mm diameter. Each plane is formed by 72 modules. Each module is formed from a 60deg slanted multi-layer bundle, where 4 fibers of a tilted column are connected to a common read out. The read-out is made with 32 channels of linear array multianode photomultipliers. Signal processing makes use of newly developed double-threshold discriminators. The discriminated signal is sent in parallel to dead-time free time-to-digital modules and to logic modules for triggering purposes.rnrnTwo fiber modules were tested with a carbon beam at GSI, showing a time resolution of 220 ps (FWHM) and a position residual of 270 microm m (FWHM) with a detection efficiency epsilon>99%.rnrnThe characterization of the spectrometer arm has been achieved through simulations calculating the transfer matrix of track parameters from the fiber detector focal plane to the primary vertex. This transfer matrix has been calculated to first order using beam transport optics and has been checked by quasielastic scattering off a carbon target, where the full kinematics is determined by measuring the recoil proton momentum. The reconstruction accuracy for the emission parameters at the quasielastic vertex was found to be on the order of 0.3 % in first test realized.rnrnThe design, construction process, commissioning, testing and characterization of the fiber hodoscope are presented in this work which has been developed at the Institut für Kernphysik of the Johannes Gutenberg - Universität Mainz.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Medical instrumentation used in diagnosis and treatment relies on the accurate detection and processing of various physiological events and signals. While signal detection technology has improved greatly in recent years, there remain inherent delays in signal detection/ processing. These delays may have significant negative clinical consequences during various pathophysiological events. Reducing or eliminating such delays would increase the ability to provide successful early intervention in certain disorders thereby increasing the efficacy of treatment. In recent years, a physical phenomenon referred to as Negative Group Delay (NGD), demonstrated in simple electronic circuits, has been shown to temporally advance the detection of analog waveforms. Specifically, the output is temporally advanced relative to the input, as the time delay through the circuit is negative. The circuit output precedes the complete detection of the input signal. This process is referred to as signal advance (SA) detection. An SA circuit model incorporating NGD was designed, developed and tested. It imparts a constant temporal signal advance over a pre-specified spectral range in which the output is almost identical to the input signal (i.e., it has minimal distortion). Certain human patho-electrophysiological events are good candidates for the application of temporally-advanced waveform detection. SA technology has potential in early arrhythmia and epileptic seizure detection and intervention. Demonstrating reliable and consistent temporally advanced detection of electrophysiological waveforms may enable intervention with a pathological event (much) earlier than previously possible. SA detection could also be used to improve the performance of neural computer interfaces, neurotherapy applications, radiation therapy and imaging. In this study, the performance of a single-stage SA circuit model on a variety of constructed input signals, and human ECGs is investigated. The data obtained is used to quantify and characterize the temporal advances and circuit gain, as well as distortions in the output waveforms relative to their inputs. This project combines elements of physics, engineering, signal processing, statistics and electrophysiology. Its success has important consequences for the development of novel interventional methodologies in cardiology and neurophysiology as well as significant potential in a broader range of both biomedical and non-biomedical areas of application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time-based localization techniques such as multilateration are favoured for positioning to wide-band signals. Applying the same techniques with narrow-band signals such as GSM is not so trivial. The process is challenged by the needs of synchronization accuracy and timestamp resolution both in the nanoseconds range. We propose approaches to deal with both challenges. On the one hand, we introduce a method to eliminate the negative effect of synchronization offset on time measurements. On the other hand, we propose timestamps with nanoseconds accuracy by using timing information from the signal processing chain. For a set of experiments, ranging from sub-urban to indoor environments, we show that our proposed approaches are able to improve the localization accuracy of TDOA approaches by several factors. We are even able to demonstrate errors as small as 10 meters for outdoor settings with narrow-band signals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In free viewpoint applications, the images are captured by an array of cameras that acquire a scene of interest from different perspectives. Any intermediate viewpoint not included in the camera array can be virtually synthesized by the decoder, at a quality that depends on the distance between the virtual view and the camera views available at decoder. Hence, it is beneficial for any user to receive camera views that are close to each other for synthesis. This is however not always feasible in bandwidth-limited overlay networks, where every node may ask for different camera views. In this work, we propose an optimized delivery strategy for free viewpoint streaming over overlay networks. We introduce the concept of layered quality-of-experience (QoE), which describes the level of interactivity offered to clients. Based on these levels of QoE, camera views are organized into layered subsets. These subsets are then delivered to clients through a prioritized network coding streaming scheme, which accommodates for the network and clients heterogeneity and effectively exploit the resources of the overlay network. Simulation results show that, in a scenario with limited bandwidth or channel reliability, the proposed method outperforms baseline network coding approaches, where the different levels of QoE are not taken into account in the delivery strategy optimization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work is part of an on-going collaborative project between the medical and signal processing communities to promote new research efforts on automatic OSA (Obstructive Apnea Syndrome) diagnosis. In this paper, we explore the differences noted in phonetic classes (interphoneme) across groups (control/apnoea) and analyze their utility for OSA detection