939 resultados para Armored vessels.
Resumo:
In contrast to the current belief that angiotensin II (Ang II) interacts with the sympathetic nervous system only as a circulating hormone, we document here the existence of endogenous Ang II in the neurons of rat and human sympathetic coeliac ganglia and their angiotensinergic innervation with mesenteric resistance blood vessels. Angiotensinogen - and angiotensin converting enzyme-mRNA were detected by using quantitative real time polymerase chain reaction in total RNA extracts of rat coeliac ganglia, while renin mRNA was untraceable. Cathepsin D, a protease responsible for cleavage beneath other substrates also angiotensinogen to angiotensin I, was successfully detected in rat coeliac ganglia indicating the possibility of existence of alternative pathways. Angiotensinogen mRNA was also detected by in situ hybridization in the cytoplasm of neurons of rat coeliac ganglia. Immunoreactivity for Ang II was demonstrated in rat and human coeliac ganglia as well as with mesenteric resistance blood vessels. By using confocal laser scanning microscopy we were able to demonstrate the presence of angiotensinergic synapses en passant along side of vascular smooth muscle cells. Our findings indicate that Ang II is synthesized inside the neurons of sympathetic coeliac ganglia and may act as an endogenous neurotransmitter locally with the mesenteric resistance blood vessels.
Resumo:
Carnoy's solution is applied to reduce the recurrence of odontogenic keratocysts and unicystic ameloblastomas. The deleterious action of this fixative on nerves has been studied but no attention has been paid to its effects on nearby vessels. The aim of this study was to investigate the effects of Carnoy's solution on blood vessels. The rat axillary artery and vein were surgically exposed, soaked with Carnoy's solution and kept in place for 2, 5 or 10 min, depending on the treatment group. The 5-min group was followed for 1, 2 and 3 weeks postoperatively. The vessels in the 2-min and 5-min exposure groups showed histological changes to the vessels, represented by focal loss of the endothelium and hyalinization of the wall. These alterations increased in the 10-min group. The vessels in the 3-week observation period revealed signs of recovery. It is concluded that Carnoy's solution can damage blood vessels but the process is reversible for exposure times less than 5 min.
Resumo:
The process of blood vessel proliferation, known as angiogenesis, is essential during embryonic development and organogenesis. In adult life, it participates in normal tissue repair, wound healing, and cyclical growth of the corpus luteum and the endometrium. Crucial as it is, angiogenesis can become pathological, and abnormal angiogenesis contributes to the pathogenesis of inflammatory and neoplasic diseases. The present review highlights the evidence for the role of angiogenesis in HCC (hepatocellular carcinoma) and discusses the increasing importance of inhibitors of angiogenesis in HCC therapy.
Resumo:
BACKGROUND: The aim of this study was to develop an experimental model that allows to elude the potential role of the preexisting graft microvasculature for vascularization and mineralization of osteochondral grafts. ANIMALS AND METHODS: For that purpose, the II-IV metatarsals of fetal DDY-mice known to be nonvascularized at day 16 of gestation (M16) but vascularized at day 18 (M18) were freshly transplanted into dorsal skin fold chambers of adult DDY mice. Using intravital microscopy angiogenesis, leukocyte-endothelium interaction and mineralization were assessed for 12 days. RESULTS: Angiogenesis occurred at 32 hours in M18, but not before 57 hours in M16 (p = 0.002), with perfusion of these vessels at 42 hours (p = 0.005) and 65 hours (p = 0.1), respectively. Vessels reached a density three times as high as that of the recipient site at day 6, remaining constant until day 12 in M18, whereas in M16 vascular density increased from day 6 and reached that of M18 at day 12 (p = 0.04). Leukocyte-endothelium interaction showed sticker counts elevated by a factor of 4-5 in M18 as compared to M16. Mineralization of osteochondral grafts did not differ between M16 and M18, which significantly increased in both groups throughout the observation period. INTERPRETATION: We propose the faster kinetics in the angiogenic response to M18 and the elevated counts of sticking leukocytes to rest on the potential of establishing end-to-end anastomoses (inosculation) of the vascularized graft with recipient vessels.
Resumo:
We used intravascular ultrasound (IVUS) and virtual histology (VH) to assess the differences of plaque burden and composition between target coronary arteries containing the culprit lesion and non-target coronary arteries.
Resumo:
BACKGROUND The long-term results after second generation everolimus eluting bioresorbable vascular scaffold (Absorb BVS) placement in small vessels are unknown. Therefore, we investigated the impact of vessel size on long-term outcomes, after Absorb BVS implantation. METHODS In ABSORB Cohort B Trial, out of the total study population (101 patients), 45 patients were assigned to undergo 6-month and 2-year angiographic follow-up (Cohort B1) and 56 patients to have angiographic follow-up at 1-year (Cohort B2). The pre-reference vessel diameter (RVD) was <2.5 mm (small-vessel group) in 41 patients (41 lesions) and ≥2.5 mm (large-vessel group) in 60 patients (61 lesions). Outcomes were compared according to pre-RVD. RESULTS At 2-year angiographic follow-up no differences in late lumen loss (0.29±0.16 mm vs 0.25±0.22 mm, p=0.4391), and in-segment binary restenosis (5.3% vs 5.3% p=1.0000) were demonstrated between groups. In the small-vessel group, intravascular ultrasound analysis showed a significant increase in vessel area (12.25±3.47 mm(2) vs 13.09±3.38 mm(2) p=0.0015), scaffold area (5.76±0.96 mm(2) vs 6.41±1.30 mm(2) p=0.0008) and lumen area (5.71±0.98 mm(2) vs 6.20±1.27 mm(2) p=0.0155) between 6-months and 2-year follow-up. No differences in plaque composition were reported between groups at either time point. At 2-year clinical follow-up, no differences in ischaemia-driven major adverse cardiac events (7.3% vs 10.2%, p=0.7335), myocardial infarction (4.9% vs 1.7%, p=0.5662) or ischaemia-driven target lesion revascularisation (2.4% vs 8.5%, p=0.3962) were reported between small and large vessels. No deaths or scaffold thrombosis were observed. CONCLUSIONS Similar clinical and angiographic outcomes at 2-year follow-up were reported in small and large vessel groups. A significant late lumen enlargement and positive vessel remodelling were observed in small vessels.
Resumo:
AIM To investigate age- and gender-related differences in non-culprit versus culprit coronary vessels assessed with virtual histology intravascular ultrasound (VH-IVUS). METHODS In 390 patients referred for coronary angiography to a single center (Luzerner Kantonsspital, Switzerland) between May 2007 and January 2011, 691 proximal vessel segments in left anterior descending, circumflex and/or right coronary arteries were imaged by VH-IVUS. Plaque burden and plaque composition (fibrous, fibro-fatty, necrotic core and dense calcium volumes) were analyzed in 3 age tertiles, according to gender and separated for vessels containing non-culprit or culprit lesions. To classify as vessel containing a culprit lesion, the patient had to present with an acute coronary syndrome, and the VH-IVUS had to be performed in a vessel segment containing the culprit lesion according to conventional coronary angiography. RESULTS In non-culprit vessels the plaque burden increased significantly with aging (in men from 37% ± 12% in the lowest to 46% ± 10% in the highest age tertile, P < 0.001; in women from 30% ± 9% to 40% ± 11%, P < 0.001); men had higher plaque burden than women at any age (P < 0.001 for each of the 3 age tertiles). In culprit vessels of the lowest age tertile, plaque burden was significantly higher than that in non-culprit vessels (in men 48% ± 6%, P < 0.001 as compared to non-culprit vessels; in women 44% ± 18%, P = 0.004 as compared to non-culprit vessels). Plaque burden of culprit vessels did not significantly change during aging (plaque burden in men of the highest age tertile 51% ± 9%, P = 0.523 as compared to lowest age tertile; in women of the highest age tertile 49% ± 8%, P = 0.449 as compared to lowest age tertile). In men, plaque morphology of culprit vessels became increasingly rupture-prone during aging (increasing percentages of necrotic core and dense calcium), whereas plaque morphology in non-culprit vessels was less rupture-prone and remained constant during aging. In women, necrotic core in non-culprit vessels was very low at young age, but increased during aging resulting in a plaque morphology that was very similar to men. Plaque morphology in culprit vessels of young women and men was similar. CONCLUSION This study provides evidence that age- and gender-related differences in plaque burden and plaque composition significantly depend on whether the vessel contained a non-culprit or culprit lesion.
Resumo:
BACKGROUND Drug eluting stents for the treatment of small vessel coronary artery disease have traditionally yielded inferior clinical outcomes compared to the use of DES in large vessels. The benefit of the second-generation Resolute zotarolimus-eluting stent (R-ZES) in small vessels was examined. METHODS Two-year clinical outcomes from five combined R-ZES studies were compared between patients with small (reference vessel diameter [RVD] ≤2.5 mm; n = 1,956) and large (RVD >2.5 mm; n = 3174) vessels. RESULTS Despite a higher incidence of comorbidities in the small vessel group, there was no significant difference in target lesion failure (TLF) (10.1% vs. 8.7%; P = 0.54) at 2 years. When the subgroup of patients with diabetes was examined (n = 1,553) there was no significant difference in 2-year TLF in small compared to large vessels (11.2% vs. 11.1%; P = 0.17). Similarly, within the small vessel cohort, no significant difference was seen regarding TLF at 2 years between people with and without diabetes (11.2% vs 9.6%; P = 0.28). CONCLUSION When used for the treatment of small vessels, the R-ZES appears to provide acceptable clinical results at 2 years when compared to its performance in large vessels.
Resumo:
Microbeam radiation therapy (MRT) is a new form of preclinical radiotherapy using quasi-parallel arrays of synchrotron X-ray microbeams. While the deposition of several hundred Grays in the microbeam paths, the normal brain tissues presents a high tolerance which is accompanied by the permanence of apparently normal vessels. Conversely, the efficiency of MRT on tumor growth control is thought to be related to a preferential damaging of tumor blood vessels. The high resistance of the healthy vascular network was demonstrated in different animal models by in vivo biphoton microscopy, magnetic resonance imaging, and histological studies. While a transient increase in permeability was shown, the structure of the vessels remained intact. The use of a chick chorioallantoic membrane at different stages of development showed that the damages induced by microbeams depend on vessel maturation. In vivo and ultrastructural observations showed negligible effects of microbeams on the mature vasculature at late stages of development; nevertheless a complete destruction of the immature capillary plexus was found in the microbeam paths. The use of MRT in rodent models revealed a preferential effect on tumor vessels. Although no major modification was observed in the vasculature of normal brain tissue, tumors showed a denudation of capillaries accompanied by transient increased permeability followed by reduced tumor perfusion and finally, a decrease in number of tumor vessels. Thus, MRT is a very promising treatment strategy with pronounced tumor control effects most likely based on the anti-vascular effects of MRT.
Resumo:
Intestinal bacterial flora may induce splanchnic hemodynamic and histological alterations that are associated with portal hypertension (PH). We hypothesized that experimental PH would be attenuated in the complete absence of intestinal bacteria. We induced prehepatic PH by partial portal vein ligation (PPVL) in germ-free (GF) or mice colonized with altered Schaedler's flora (ASF). After 2 or 7 days, we performed hemodynamic measurements, including portal pressure (PP) and portosystemic shunts (PSS), and collected tissues for histomorphology, microbiology, and gene expression studies. Mice colonized with intestinal microbiota presented significantly higher PP levels after PPVL, compared to GF, mice. Presence of bacterial flora was also associated with significantly increased PSS and spleen weight. However, there were no hemodynamic differences between sham-operated mice in the presence or absence of intestinal flora. Bacterial translocation to the spleen was demonstrated 2 days, but not 7 days, after PPVL. Intestinal lymphatic and blood vessels were more abundant in colonized and in portal hypertensive mice, as compared to GF and sham-operated mice. Expression of the intestinal antimicrobial peptide, angiogenin-4, was suppressed in GF mice, but increased significantly after PPVL, whereas other angiogenic factors remained unchanged. Moreover, colonization of GF mice with ASF 2 days after PPVL led to a significant increase in intestinal blood vessels, compared to controls. The relative increase in PP after PPVL in ASF and specific pathogen-free mice was not significantly different. CONCLUSION In the complete absence of gut microbial flora PP is normal, but experimental PH is significantly attenuated. Intestinal mucosal lymphatic and blood vessels induced by bacterial colonization may contribute to development of PH.