879 resultados para Aqueous-solutions
Resumo:
In the present study a versatile and efficient adsorbent with high adsorption capacity for adsorption of Congo red dye in aqueous solution at ambient temperature without adjusting any pH is presented over the Ag modified calcium hydroxyapatite (CaHAp). CaHAp and Ag-doped CaHAp materials were synthesized using facile aqueous precipitation method. The physico-chemical properties of the materials were determined by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Transmission electron microscopy (TEM), UV-Visible spectroscopy, N-2 physisorption and acidity was determined by n-butylamine titration and pyridine adsorption methods. XRD analysis confirmed all adsorbents exhibit hexagonal CaHAp structure with P6(3)/m space group. TEM analysis confirms the rod like morphology of the adsorbents and the average length of the rods were in the range of 40-45 nm. Pyridine adsorption results indicate increase in number of Lewis acid sites with Ag doping in CaHAp. Adsorption capacity of CaHAp was found increased with Ag content in the adsorbents. Ag (10): CaHAp adsorbent showed superior adsorption performance among all the adsorbents for various concentrations of Congo red (CR) dye in aqueous solutions. The amount of CR dye adsorbed on Ag (10): CaHAp was found to be 49.89-267.81 mg g(-1) for 50-300 ppm in aqueous solution. A good correlation between adsorption capacity and acidity of the adsorbents was observed. The adsorption kinetic data of adsorbents fitted well with pseudo second-order kinetic model with correlation coefficients ranged from 0.998 to 0.999. The equilibrium adsorption data was found to best fit to the Langmuir adsorption isotherm model. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Picric acid possesses the property, which is rare among strong electrolytes, of having a convenient distribution ratio between water and certain organic solvents such as benzene, chloroform, etc. Because of this property, picric acid offers peculiar advantages for studying the well known deviations of strong electrolytes from the law of mass action, for; by means of distribution experiments, the activities of picric acid in various aqueous solutions may be compared.
In order to interpret the results of such distribution experiments, it is necessary to know the degree of ionization of picric acid in aqueous solutions.
At least three series of determinations of the equivalent conductance of picric acid have been published, but the results are not concordant; and therefore, the degree of ionization cannot be calculated with any degree of certainty.
The object of the present investigation was to redetermine the conductance of picric acid solutions in order to obtain satisfactory data from which the degrees of ionization of its solutions might be calculated.
Resumo:
Part I
Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.
The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.
Part II
The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.
Part III
An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.
Resumo:
Satellite droplets are unwanted in inkjet printing and various approaches have been suggested for their reduction. Low jetting speeds limit applications of the process. Added surfactants for wetting and conductivity enhancement may help but dynamic surface tension effects may counteract improvements. A higher fluid viscosity delays ligament break-up, but also leads to slower jets, while viscoelasticity reduces satellite formation only in certain cases. We show here that aqueous solutions of PEDOT:PSS (1:2.5 by weight) are strongly shear-thinning. They exhibit low viscosity within the printing nozzle over a wide range of jet speeds, yet rapidly (<100 μs) recover a higher viscosity at the low shear rates applicable once the jet has formed, which give the benefit of delayed satellite formation. The delay over a 0.8 mm stand-off distance can be sufficient to completely suppress satellites, which is significant for many printing applications. © 2012 Elsevier B.V. All rights reserved.
Resumo:
A new model is presented which describes the growth of the duplex layers of Fe3O4 on mild steel in high temperature, deoxygenated, neutral or alkaline aqueous solutions. It is shown that the layers grow by the ingress of water along oxide micropores to the metal-oxide interface and by the rate-limiting outward diffusion of Fe ions along oxide grain boundaries. The new model accounts for the observed temperature-dependence and pH-dependence of the corrosion, the morphology of inner and outer layer crystallites, the segregation of alloying elements, and the location of hydrogen evolution. The model can also be generalized to other steels and alloys. © 1989.
Resumo:
Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals ((OH)-O-.) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that (OH)-O-. photoproduction increased from 1.80 to 2.74 muM by increasing the HA concentration from 10 to 40 mg L-1 at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of (OH)-O-. in the HA solution with Fe(111) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of (OH)-O-. in HA solution with algae with or without Fe(111) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of (OH)-O-. in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest (OH)-O-. photoproduction at pH 4.0.
Resumo:
Electrolyte electroreflectance spectra of the near-surface strained-layer In0.15Ga0.85As/GaAs double single-quantum-well electrode have been studied at different biases in non-aqueous solutions of ferrocene and acetylferrocene. The optical transitions, the Franz-Keldysh oscillations (FKOs) and the quantum confined Stark effects (QCSE) of In0.15Ga0.85As/GaAs quantum well electrodes are analyzed. Electric field strengths at the In0.15Ga0.85As/GaAs interface are calculated in both solutions by a fast Fourier transform analysis of FKOs. A dip is exhibited in the electric field strength versus bias (from 0 to 1.2 V) curve in ferrocene solution. A model concerning the interfacial tunneling transfer of electrons is used to explain the behavior of the electric field. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In this study, binodal curves and tie line data of [Amim]Cl + salt (K3PO4, K2HPO4, K2CO3) + water aqueous biphasic systems (ABS) were measured and correlated satisfactorily with the Merchuk equation and Othmer-Tobias and Bancroft equations, respectively. [Amim]Cl could be recovered from aqueous solutions using the ABS, and the recovery efficiency could reach 96.80%. The recovery efficiency was influenced by the concentrations of the salts and their Homeister series: K3PO4 > K2HPO4 > K2CO3. Our method provides a new and effective route for the recovery of hydrophilic IL using [Amim]Cl + salt + water ABS from aqueous solutions.
Resumo:
Monte Carlo simulation on the basis of the comblike coarse grained nonpolar/polar (NP) model has been carried out to study the polar group saturation effect on physical gelation of amphiphilic polymer solutions. The effects of polar group saturation due to hydrogen bonding or ion bridging on the sol-gel phase diagram, microstructure of aggregates, and chain conformation of amphiphilic polymer solutions under four different solvent conditions to either the nonpolar backbone or the polar side chain in amphiphilic polymer chains have been investigated. It is found that an increase of polar group saturation results in a monotonically decreased critical concentration of gelation point, which can be qualitatively supported by the dynamic theological measurements on pectin aqueous solutions. Furthermore, various solvent conditions to either the backbone or the side chain have significant impact on both chain conformation and microstructure of aggregates. When the solvent is repulsive to the nonpolar backbone but attractive to the polar side chain, the polymer chains are collapsed, and the gelation follows the mechanism of colloidal packing; at the other solvent conditions, the gelation follows the mechanism of random aggregation.
Resumo:
Monodispersed nanoparticles of Ag(I)-polymer hybrids have been prepared by using designed crown-ether-centred two-armed copolymers to chelate Ag+ ions at the interface of organic-aqueous solutions. The copolymer-Ag+ complex nanoparticles, as well as the reduced copolymer-Ag nanoparticles, have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). The particle size can be varied by simply changing the polymer concentration, the monomers, and/or the molecular weight. The copolymer-Ag(I) hybrids exhibit weak photoluminescence, which was substantially enhanced after the hybrids were reduced to copolymer-silver nanoparticles with UV irradiation.
Resumo:
The bastnasite of Baotou (China) was roasted in concentrated sulfuric acid at 250-300 degreesC and the calcined products were leached by water. Almost all rare earths (RE) were moved into solutions in trivalent along with some radioactive impurity thorium(IV) (Th(IV))which accounts for 0.4% of RE and other impurities such as Fe(III), Ca, F, P, etc. Through fractional extraction (seven stages for extraction and nine for scrubbing), the mass ratio of Th(IV) and RE (ThO2/REO) in solution has decreased to 5 x 10(-6). The purity of ThO2 product recovered from organic phase is above 99%. The iron(III) in solutions can be removed in the form of precipitation by adding some magnesia into the solutions. Then RE can be concentrated by solvent extraction with 2-ethylhexyl phosphinic acid 2-ethylhexylester (P-507). The results of fractional extraction show that the concentration of total RE in aqueous solutions stripped by hydrochloric acid is over 200 g REO/I with the yield of RE above 99%. Individual RE can be attained by solvent extraction with P507 in the following process.
Resumo:
Physical gelation in the concentrated Pluronic F127/D2O solution has been studied by a combination of small-angle neutron scattering (SANS) and Monte Carlo simulation. A 15% F127/D2O solution exhibits a sol-gel transition at low temperature and a gel-sol transition at the higher temperature, as evidenced by SANS and Monte Carlo simulation studies. Our SANS and simulation results also suggest that the sol-gel transition is dominated by the formation of a percolated polymer network, while the gel-sol transition is determined by the loss of bound solvent. Furthermore, different diffusion behaviors of different bound solvents and free solvent are observed. We expect that this approach can be further extended to study phase behaviors of other systems with similar sol-gel phase diagrams.
Resumo:
Ultrasonic absorption coefficients for ethylamine in heavy water (D2O) and in light water (H2O) have been measured in the frequency range from 0.8 to 220 MHz at 25 degrees C. A single relaxational process has been observed in these two kinds of solutions. From the concentration dependence of the ultrasonic relaxation parameters, and following the reaction mechanism proposed by Eigen et al. for ethylamine in H2O, the causes of the relaxations have been attributed to a perturbation of an equilibrium associated with a deuteron or proton transfer reaction. The rate and equilibrium constants have been estimated from deuterioxide or hydroxide ion concentration dependence of the relaxation frequency, and the kinetic isotope effects have been determined. In addition, the standard volume changes of the reactions have been calculated from the concentration dependence of the maximum absorption per wavelength, and the adiabatic compressibility has also been determined from the density and sound velocity for ethylamine in D2O and in H2O, respectively. These results are compared with those for propylamine and butylamine and are discussed in relation to the different kinetic properties between D2O and H2O, the reaction radii derived by Debye theory, and the structural properties of the reaction intermediate.
Resumo:
1:1 complexes of beta-cyclodextrin (CD) with three amino acids (Gly, Phe and Trp) have been detected as ions in the gas phase using infusion positive and negative ion electrospray ionization mass spectrometry (ESI-MS). In contrast with the positive ion ESI mass spectra of simple aqueous solutions, the aggregates and adducts usually formed in the ESI process did not appear in the positive ion ESI spectra of solutions buffered with ammonium acetate (NH4Ac), even at higher analyte concentrations, These studies suggest that addition of buffer and/or use of a low analyte concentration should be used to overcome formation of aggregates and metal ion adducts in such mass spectrometry studies. Also, the deprotonated complexes are dissociated by collision induced dissociation (CID) to form an abundant product ion, the deprotonated CD, requiring transfer of a proton to the amino acid carboxyl group, To understand formation of complexes in the gas phase, gel permeation chromatography (GPC) was used to separate free amino acids (AAs) from complexes in an incubated solution. The ESI mass spectra of the GPC fractions show the presence of 1:1 complexes of both CD-aromatic amino acids and CD-aliphatic amino acids. Compared with CD-aliphatic amino acid complexes, CD-aromatic amino acid complexes appear to be destabilized in the gas phase, possibly because the hydrophobic interaction which binds the aromatic group of amino acids in the CD cavity in solution may become repulsive when solvent evaporates from the droplets during the electrospray process, whereas those complex ions formed as proton bound dimers are stabilized by electrostatic forces, the major binding force for such complexes in the gas phase. In addition, the GPC technique coupled with off-line ESI-MS can rapidly separate CD complexes by size, and provides some information on the character of the complexes in solution. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
The effects of the degree of deacetylation (DD) on the viscosity and flow behaviour of concentrated solutions of chitosan were investigated using 0.2 M CH3COOH and 0.2 M CH3COOH/0.1 M CH3COONa aqueous solutions as solvents. The results indicated that the