944 resultados para Antigens, CD4


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the changes in some of the cellular components of the immune system and the activity of the cytokine interleukin 2, important for immune activation and lymphocyte proliferation, were measured in a large cross-sectional study of all age groups including octogenarian and nonagenarian subjects. In 206 apparently well community-living subjects, the absolute lymphocyte count and T and B cell numbers fell a little in old and very old subjects. Within the T cell compartment, helper/inducer CD4+ T cells, together with their subsets identified as 'naive' (CD4+/CD45RA+) and 'memory' (CD4+/CD45RO+) cells, also showed a decline with increased age. The suppressor/cytotoxic CD8+ subset showed no age-related change. The levels of the cytokine interleukin 2 were very low in octogenarian and nonagenarian subjects, while the soluble interleukin 2 receptor levels increased with increasing age. The interleukin 2 levels were associated with number and percentage of the 'memory' (CD4+/CD45RO+) subset of T cells which mediates the host response to previously met antigens. Since the interleukin 2 values were very low in the oldest groups and were associated with a reduced 'memory' (CD4+/CD45RO+) compartment, this suggests a possible mechanism of why the very elderly subject is more susceptible to morbidity and mortality from infectious or other agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria. The LPS molecule is composed of two biosynthetic entities: the lipid A--core and the O-polysaccharide (O-antigen). Most biological effects of LPS are due to the lipid A part, however, there is an increasing body of evidence indicating that O-antigen (O-ag) plays an important role in effective colonization of host tissues, resistance to complement-mediated killing and in the resistance to cationic antimicrobial peptides that are key elements of the innate immune system. In this review, we will discuss: (i) the work done on the genetics and biosynthesis of the O-ags in the genus Yersinia; (ii) the role of O-ag in virulence of these bacteria; (iii) the work done on regulation of the O-ag gene cluster expression and; (iv) the impact that the O-ag expression has on other bacterial surface and membrane components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A monoclonal antibody specific for the T1 tegumental antigen of Fasciola hepatica was used as a solid-phase immunosorbent for the purification of T1 antigen from homogenised mature F hepatica. Material fractionated by this technique was successfully used in enzyme-linked immunoassays to detect antibodies to F hepatica in sera from sheep and cattle. Species differences in response to infection by F hepatica were demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of monoclonal antibodies was prepared against tegumental and internal antigens of Fasciola hepatica by immunizing mice with whole adult-fluke homogenates prior to harvesting the splenic lymphocytes for fusion. Preliminary screening by the Indirect Fluorescent Antibody technique indicated the occurrence of discrete groups of monoclonals differing from one another in tissue-specificity but within which IFA labelling patterns were fairly consistent. Representative hybridomas for 5 of these groups were stabilized and used to produce ascites fluid in mice. By application of an immunogold labelling technique it was possible to map the distribution of antigens for which each monoclonal antibody had affinity throughout the tissues of 4-week and 12-week flukes. Several monoclonals specifically labelled antigenic determinants on the important tegumental antigen T1. However the distribution of gold colloid labelling suggested that epitopes other than that normally exposed to the infected host were recognized; and several monoclonals specifically attached to T1 antigen in the tegument of juvenile worms only. The glycocalyx of the gut and excretory system of flukes shared T1 antigenicity with the tegument. Monoclonal antibodies were produced against an internal immunogen associated with ribosomes and heterochromatin in active protein-producing cells, and against interstitial material of adult flukes. Monoclonals against antigens in parenchymal cell cytoplasm and in mature vitelline cells were recognized but the corresponding hybridomas were not stabilized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background

Whilst there have been a number of insights into the subsets of CD4+ T cells induced by pathogenicBacillus anthracis infections in animal models, how these findings relate to responses generated in naturally infected and vaccinated humans has yet to be fully established. We describe the cytokine profile produced in response to T cell stimulation with a previously defined immunodominant antigen of anthrax, lethal factor (LF), domain IV, in cohorts of individuals with a history of cutaneous anthrax, compared with vaccinees receiving the U.K. licenced Anthrax Vaccine Precipitated (AVP) vaccine.

Findings

We found that immunity following natural cutaneous infection was significantly different from that seen after vaccination. AVP vaccination was found to result in a polarized IFNγ CD4+ T cell response, while the individuals exposed to B. anthracis by natural infection mounted a broader cytokine response encompassing IFNγ, IL-5, −9, −10, −13, −17, and −22.

Conclusions

Vaccines seeking to incorporate the robust, long-lasting, CD4 T cell immune responses observed in naturally acquired cutaneous anthrax cases may need to elicit a similarly broad spectrum cellular immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis "infectome." These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from the same study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called 'cryptic' or 'subdominant' epitopes. We analyzed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISpot assays we characterized epitopes that elicited a response following immunization with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, as a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 transgenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were influenced by the specific HLA alleles presenting the peptide, and imply that construction of future epitope string vaccines which are immunogenic across a wide range of HLA alleles could benefit from a combination of both cryptic and immunodominant anthrax epitopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO: Introdução. O cancro de bexiga é uma patologia comum que representa o 6° e o 5° cancro mais incidente em Portugal e na Itália, respetivamente. Em mais de metade dos casos ocorre reincidência durante o primeiro ano, requerendo acompanhamento clínico ao longo da vida. A instilação intravesical de Bacillus Calmette-Guérin (BCG) (uma estirpe atenuada do Mycobacterium bovis) representa uma imunoterapia eficaz no combate ao cancro de bexiga, no entanto, muitos aspetos da interação de BCG com as células tumorais bem como com as células do sistema imunitário permanecem por desvendar. As células tumorais de bexiga expressam frequentemente as formas sialiladas dos antigénios de Thomsen-Friedenreich (TF), i.e., sialil-T (sT) e sialil-Tn (sTn). Contudo ainda se desconhece o significado da sua expressão na malignidade tumoral e se afeta a eficácia da terapêutica BCG. Objetivo do estudo. Investigar o papel dos antigénios sT e sTn no fenótipo maligno de células de cancro de bexiga bem como na resposta mediada pelo sistema imunitário à terapia com BCG. Metodologia. Para tal, foram utilizadas as linhas celulares de cancro da bexiga HT1376 e MCR, geneticamente modificadas por transdução com vetores codificantes para as sialiltransferases ST3GAL1 ou ST6GALNAC1, de forma a expressar homogeneamente os antigénios sT ou sTn respetivamente. Estes modelos celulares foram estudados após confronto com BCG. O nível de BCG internalizado foi avaliado por citometria de fluxo. O perfil global de expressão genética dos modelos celulares antes e após incubação com BCG foi analisado pela tecnologia de microarray. O perfil de citocinas secretadas pelos modelos celulares após incubação com BCG, bem como de macrófagos estimulados pelo secretoma de células de cancro de bexiga que por sua vez foram estimuladas previamente por BCG, foi estudado pelo sistema multiplex de “imuno-esferas”. Resultados. A análise do transcritoma dos modelos celulares revelou que grupos de genes envolvidos em funções específicas foram modulados em paralelo nos dois modelos celulares, após transdução, independentemente da sialiltransferase expressa. Ou seja, em células que expressavam a sialiltransferase ST3GAL1 ou ST6GALNAC1, os genes envolvidos na regulação da segregação cromossómica e na reparação do DNA foram consistentemente regulados negativamente. Genes descritos na literatura como marcadores para o cancro de bexiga foram também modulados. A incubação com BCG resultou numa tendência ao aumento da expressão de genes relevantes na preservação e estabilidade genómica e menor malignidade, no entanto, apenas em células que expressavam sT ou sTn. Entre as dez citocinas testadas, apenas a IL-6 e IL-8 foram expressas pelas linhas celulares de cancro da bexiga, com indução destas após estimulação com BCG, e principalmente em células que expressavam ST3GAL1 ou ST6GALNAC1. Em macrófagos, citocinas inflamatórias, tais como IL-1β, IL-6 e TNFα, e a citocina anti-inflamatória IL-10, foram induzidas apenas pelo secretoma de células de cancro da bexiga confrontadas com BCG, com maior relevância quando estas expressavam ST3GAL1 ou ST6GALNAC1, prevendo a estimulação de macrófagos semelhantes aos de tipo M1 e uma melhor resposta à terapia com BCG. Conclusões. O efeito geral da expressão destas sialiltransferases e dos produtos enzimáticos sT ou sTn nas células de cancro de bexiga conduz a um fenótipo de maior malignidade. Contudo, a maior avidez de estas na produção de citocinas inflamatórias após confronto com BCG, bem como a maior capacidade de estimulação de macrófagos, predirá uma resposta à terapia com BCG mais eficaz em tumores que expressem os antigénios de TF sialilados. Tais conclusões são totalmente concordantes com os nossos mais recentes dados clínicos obtidos em colaboração, que mostram que em doentes com cancro de bexiga que expressam sTn respondem melhor a terapia BCG. ----------ABSTRACT: Background. Bladder cancer is a common malignancy representing the 6th and the 5th most incident cancer in Portugal and in Italy, respectively. More than half of the cases relapse within one year, requiring though a lifelong follow-up. Intravesical instillation of Bacillus Calmette-Guérin (BCG) (an attenuated strain of Mycobacterium bovis) represents an effective immunotherapy of bladder cancer, although many aspects of the interaction of BCG with cancer cells and host immune cells remain obscure. Bladder cancer cells often express the sialylated forms of the Thomsen-Friedenreich (TF), i.e., sialil-T (sT) e sialil-Tn (sTn). However, it’s still unknown the sense of such expression in tumour malignancy and in the BCG therapy efficacy. Aim of the study. To investigate the role of the sT and sTn antigens on the malignant phenotype of bladder cancer cells and the immune mediated response to BCG therapy. Experimental. We have utilized populations of the bladder cancer cell lines HT1376 and MCR, genetically modified by transduction with the sialyltransferases ST3GAL1 or ST6GALNAC1 to express homogeneously sT or sTn antigens. The level of BCG internalized was assessed by flow cytometry. The whole gene expression profile of BCG-challenged or unchallenged bladder cancer cell lines was studied by microarray technology. The profile of cytokines secreted by BCG-challenged bladder cancer cells and that of macrophages challenged by the secretome of BCG-challenged bladder cancer cells was studied by multiplex immune-beads assay. Results. Transcriptome analysis of the sialyltransferase-transduced cells revealed that groups of genes involved in specific functions were regulated in parallel in the two cell lines, regardless the sialyltransferase expressed. Namely, in sialyltransferase-expressing cells, genes involved in the proper chromosomal segregation and in the DNA repair were consistently down-regulated, while genes reported in literature as markers for bladder cancer were modulated. BCG-challenging induced a tendency to up-regulation of the genes preserving genomic stability and reducing malignancy, but only in cells expressing either sT or sTn. Among the ten cytokines tested, only IL-6 and IL-8 were expressed by bladder cancer cell lines and up-regulated by BCG-challenging, mainly in sialyltransferases-expressing cells. In macrophages, inflammatory cytokines, such as IL-1β, IL-6 and TNFα, and the antinflammatory IL-10 were induced only by the secretome of BCG-challenged bladder cancer cells, particularly when expressing either sialyltransferase, predicting the stimulation of M1-like macrophages and a better response to BCG therapy. Conclusions. The general effect of the expression of the two sialyltransferases and their products in the bladder cancer cells is toward a more malignant phenotype. However, the stronger ability of sialyltransferase expressing cells to produce inflammatory cytokines upon BCG-challenging and to stimulate macrophages predicts a more effective response to BCG in tumours expressing the sialylated TF antigens. This is fully consistent with our recent clinical data obtained in collaboration, showing that patients with bladder cancer expressing sTn respond better to BCG therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO:O processo de glicosilação é a modificação pós-traducional de proteínas mais comum e está envolvido em vários processos fisiológicos e patológicos. Especificamente, certos perfis glicosídeos estão correlacionados a estados específicos de diferenciação celular, e podem modular vários eventos celulares, como sinalização celular, migração celular e interações hospedeiro-patogénio. Assim sendo, a glicosilação desempenha um papel crucial na modulação de vários processos imunológicos. No entanto, permanece por esclarecer como as estruturas glicosídicas influenciam a imunidade. Especificamente, algumas estruturas glicosídicas terminais que estão modificadas pela ligação de ácido siálico desempenham um papel importante em várias funções do sistema imune, nomeadamente migração leucocitária em contexto de inflamação e ativação de células imunes. Como tal, este trabalho teve como objectivo investigar como a expressão de certos glicanos influencia componentes importantes da resposta imune inata e adaptativa. Este trabalho está dividido em três componentes principais: 1) A imunidade está amplamente dependente da habilidade das células circulantes migrarem para os tecidos inflamados, sendo que a ligação de leucócitos à Eselectina endotelial é o primeiro passo. Assim, nós analisámos a estrutura e função dos ligandos de E-selectina que são expressos pelas células humanas mononucleares de sangue periférico (PBMCs), fornecendo novos conhecimentos para a compreensão dos intervenientes moleculares que mediam a ligação dos monócitos, células CD4+ e CD8+T e células B ao endotélio vascular. Surpreendentemente, os monócitos apresentaram maior capacidade de ligação à E-selectina comparativamente aos linfócitos. Esta observação pode ser explicada pelo facto de os monócitos humanos expressarem, uniformemente, um vasto reportório de glicoproteínas que exibem afinidade de ligação à E-selectina, nomeadamente: as glicoformas do CD43 (CD43E) e do CD44 (HCELL), em adição à já previamente reportada glicoforma da PSGL-1 (CLA). Consistentemente, a diferente capacidade que as diversas populações linfocitárias apresentam de se ligar à E-selectina, está integralmente relacionada com a sua expressão de glicoproteínas com afinidade de ligação à E-selectina. Enquanto que as células CD4+T apresentam uma elevada reatividade à E-selectina, as células CD8+T e B demonstram pouca ou nenhuma capacidade de ligação à E-selectina. Esta atividade de ligação à E-selectina das células CD4+T é conferida pela expressão de HCELL, em adição às já previamente reportadas CLA e CD43E. As células CD8+ T não expressam HCELL e apenas expressam pequenas quantidades de CLA e CD43E, enquanto que as células B não expressam ligandos de Eselectina. Mais, a exofucosilação da superfície destas células, levou ao dramático aumento da expressão dos ligandos de E-selectina em todos as populações leucocitárias, verificando-se que a criação de certos ligandos de E-selectina está dependente do tipo de célula, após fucosilação. Colectivamente, estes resultados redefinem o nosso conhecimento acerca dos mecanismos moleculares que governam o tráfico das células mononucleares de sangue periférico em contexto de inflamação. 2) A habilidade das células dendríticas (DCs) para extravasarem em locais de inflamação é crucial para o sucesso da terapia com DCs. Assim, analisámos a estrutura e função das moléculas de adesão que mediam a migração transendotelial (TEM) das DCs. Para isso, foram usadas DCs geradas a partir da diferenciação de monócitos (mo-DCS), obtidos quer pelo métodos de separação imuno-magnética de células CD14+ (CD14-S) ou por isolamento por aderência ao plástico (PA-S). Os resultados obtidos indicam que as glicoformas de ligação à Eselectina de PSGL-1, CD43 e CD44 são expressas pelas CD14-S mo-DCs, enquanto que as PA-S mo-DCs expressam apenas CLA. É importante notar que a ligação do CD44 nas mo-DCs, mas não nas PA-S mo-DCs, desencadeia a ativação e consequente adesão da VLA-4 ao endotélio na ausência de um gradiente de quimiocinas. Procedeu-se também à análise dos ligandos E-selectina expressos em mo-DCs geradas a partir de monócitos do sangue do cordão umbilical (UCB) e, inesperadamente, as UCB mo-DCs não expressam qualquer glicoproteína com reatividade à E-selectina. Além disso, a exofucosilação das mo- DCs humanas utilizando uma α(1,3)-fucosiltransferase aumenta significativamente a expressão de HCELL e, portanto, estas células apresentam uma capacidade aumentada para se ligarem à E-selectina em condições de fluxo hemodinâmico. Estes resultados destacam o papel do HCELL no desencadeamento do TEM das CD14-S mo-DCs e sugerem que estratégias para potenciar a expressão de HCELL poderão impulsionar o recrutamento de mo-DCs para locais de inflamação. 3) Outro obstáculo para alcançar o sucesso promissor de vacinas baseadas em DCs é o estabelecimento de abordagens eficientes que poderão melhorar o estado de maturação e apresentação antigénica das DCs. Por conseguinte, foram investigadas abordagens alternativas que podem superar este obstáculo. Através da remoção de ácido siálico de superfície celular das DCs, conseguiu-se induzir a maturação de DC humanas e de ratinhos. Notavelmente, tanto as DCs humanas como as de ratinho, ao serem desialiladas mostraram uma capacidade aumentada para induzir a proliferação de células T, para secretar citocinas Th1 e para induzir a morte específica de células tumorais. Em adição, as DCs desialiladas apresentam uma maior capacidade de apresentação cruzada de antigénios tumorais às células T citotóxicas. Colectivamente, o presente estudo oferece uma visão chave para optimizar a capacidade das DCs em induzir respostas imunitárias anti-tumorais, e indica que o tratamento com sialidase é uma nova tecnologia para melhorar a eficácia e aplicabilidade das vacinas baseadas em DCs. Coletivamente, os nossos resultados demostram como a glicosilação e a sua manipulação podem modular a imunidade. Concretamente, através de uma reação de exofucosilação conseguimos aumentar fortemente a capacidade de os leucócitos extravasarem para os tecidos afectados, enquanto que a remoção dos níveis de ácido siálico da superfície celular das DCs, induz potentes respostas anti-tumorais mediadas por células T citotóxicas. ---------------------------- ABSTRACT: Glycosylation is the most widely form of protein post-translational modification and is involved in many physiological and pathological processes. Specifically, certain patterns of glycosylation are associated with determined stages of cell differentiation and can modulate processes like cell-signaling and migration and host-pathogen interactions. As such, glycosylation plays a crucial role in the modulation of several immune events. However, how glycans execute this immune-modulation and, therefore, influence immunity is still poorly unknown. Specifically, some terminal sialic acid-modified determinants are known to be involved in several physiological immune processes, including leukocyte trafficking into sites of inflammation and cell immune activation. Therefore, in this work, we sought to investigate more deeply how the expression of these glycosidic structures affects events form both innate and adaptive immune responses. To this end, we divided our work into three main parts: 1) Immunity critically depends on the ability of sentinel circulating cells to infiltrate injured sites, of which leukocyte binding to endothelial E-selectin is the critical first step. Thus, we first analyzed the structure and function of the E-selectin ligands expressed on native human peripheral blood mononuclear cells (PBMCs), providing novel insights into the molecular effectors governing adhesion of circulating monocytes, and of circulating CD4+T, CD8+T and B cells, to vascular endothelium under hemodynamic shear conditions. Strikingly, monocytes show a higher ability to tether and roll on endothelial cells than lymphocyte subsets. This is due to the fact that human circulating monocytes uniformly display a wide repertoire of E-selectin binding glycoproteins, namely the E-selectin-binding glycoforms of CD43 (CD43E) and CD44 (HCELL), in addition to the previously described E-selectin-binding glycoform of PSGL-1 (CLA). In addition, we also observed a differential ability of the different lymphocyte subsets to bind to Eselectin under hemodynamic shear stress conditions, and these differences were highly correlated with their individual expression of E-selectin binding glycoproteins. While CD4+T cells show a robust E-selectin binding ability, CD8+T and B cells show little to no E-selectin reactivity. CD4+T cell potent Eselectin rolling activity is conferred by HCELL expression, in addition to the previously reported E-selectin-binding glycoproteins CD43E and CLA. CD8+T cells display no HCELL and low amounts of CLA and CD43E, whereas B cells lack E-selectin ligand expression. Moreover, enforced exofucosylation of cell surface of these cells noticeably increases expression of functional E-selectin ligands among all leukocytes subsets, with cell type-dependent specificity in the protein scaffolds that are modified. Taken together, these findings redefine our understanding of the molecular mechanisms governing the trafficking patterns of PBMCs that are relevant in the context of acute or chronic inflammatory conditions. 2) The ability of circulating dendritic cells (DCs) to extravasate at inflammatory sites is critical to the success of DC-based therapies. Therefore, we assessed the structure and function of adhesion molecules mediating the transendothelial migration (TEM) of human monocyte derived-DCs (mo-DCs), obtained either by CD14 positive immune-magnetic selection (CD14-S) or by plastic adherence of blood monocytes (PA-S). We report for the first time that the E-selectin binding glycoforms of PSGL-1, CD43 and CD44 are all expressed on CD14-S mo-DCs, in contrast to PA-S mo-DCs that express only CLA. Importantly, CD44 engagement on CD14-S mo-DCs, but not on PA-S mo-DCs, triggers VLA-4-dependent adhesiveness and programs TEM in absence of chemokine gradient. We also analyzed the E-selectin ligands expressed on mo-DCs generated from umbilical cord blood (UCB) monocytes, and unexpectedly, UCB mo-DCs do not express any glycoprotein with E-selectin reactivity. Furthermore, exoglycosylation of human mo-DCs using an α(1,3)-fucosyltransferase significantly increases expression of HCELL, and therefore exofucosylated mo-DCs exhibit an augmented ability to bind to E-selectin under hemodynamic shear stress conditions. These findings highlight a role for HCELL engagement in priming TEM of CD14-S mo-DCs, and suggest that strategies to enforce HCELL expression could boost mo-DC recruitment to inflammatory sites.3) Another obstacle to achieve the promising success of DC-based vaccines is the establishment of efficient approaches that could successfully enhance maturation and cross-presentation ability of DCs. Therefore, we investigated an alternative approach that can overcome this problem. Through removal of sialic acid content from DC cell surface we are able to elicit maturation of both human and mouse DCs. Notably, desialylated human and murine DCs showed enhanced ability to induce autologous T cell to proliferate, to secrete Th1 cytokines and to kill tumor cells. Moreover, desialylated DCs display enhanced cross-presentation of tumor antigens to cytotoxic CD8+ T cells. Collectively, this study offers key insight to optimize the ability of DCs to boost anti-tumor immune responses, and indicates that the treatment with an exogenous sialidase is a powerful new technology to improve the efficacy and applicability of DC-based vaccines. Overall, our findings show how glycosylation and its manipulation can modulate immunity. Concretely, through an exofucosylation reaction we are able to greatly augment the ability of leukocytes to extravasate into injured tissues, while removal of sialic acid moieties from cell surface of DCs, significantly potentiate their ability to induce anti-tumor cytotoxic T cell-mediate responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T lymphocytes reactive with the product of the Mlsa-allele of the minor lymphocyte stimulating (Mls) locus use a predominant T-cell receptor beta-chain variable gene segment (V beta 6). Such V beta 6-bearing T cells are selectively eliminated in the thymus of Mlsa-bearing mice, consistent with a model in which tolerance to self antigens is achieved by clonal deletion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4⁺ T helper cells are playing critical roles in host defense to pathogens and in the maintenance of immune homeostasis. Naïve CD4⁺T cells, upon antigen-specific recognition, receive signals to differentiate into distinct effector T helper cell subsets characterized by their pattern of cytokine production and specific immune functions. A tight balance between these different subsets ensures proper control of the immune response. There is increasing evidence revealing an important role for Notch signaling in the regulation of CD4⁺T helper cell differentiation or function in the periphery. However, the exact mechanisms involved remain unclear and appear contradictory. In this review, we summarize current knowledge and discuss recent advances in the field to reconcile different views on the role of Notch signaling in the differentiation of functional T helper subsets.