949 resultados para Anti-inflammatory effect


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the effects of helium-neon (He-Ne) laser irradiation on wound healing dynamics in mice treated with steroidal and non-steroidal anti-inflammatory agents. Male albino mice, 28-32 g, were randomized into 6 groups of 6 animals each: control (C), He-Ne laser (L), dexamethasone (D), D + L, celecoxib (X), and X + L. D and X were injected im at doses of 5 and 22 mg/kg, respectively, 24 h before the experiment. A 1-cm long surgical wound was made with a scalpel on the abdomens of the mice. Animals from groups L, D + L and X + L were exposed to 4 J (cm²)-1 day-1 of He-Ne laser for 12 s and were sacrificed on days 1, 2, or 3 after the procedure, when skin samples were taken for histological examination. A significant increase of collagen synthesis was observed in group L compared with C (168 ± 20 vs 63 ± 8 mm²). The basal cellularity values on day 1 were: C = 763 ± 47, L = 1116 ± 85, D = 376 ± 24, D + L = 698 ± 31, X = 453 ± 29, X + L = 639 ± 32 U/mm². These data show that application of L increases while D and X decrease the inflammatory cellularity compared with C. They also show that L restores the diminished cellularity induced by the anti-inflammatory drugs. We suggest that He-Ne laser promotes collagen formation and restores the baseline cellularity after pharmacological inhibition, indicating new perspectives for laser therapy aiming to increase the healing process when anti-inflammatory drugs are used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemic preconditioning (IPC), a strategy used to attenuate ischemia-reperfusion injury, consists of brief ischemic periods, each followed by reperfusion, prior to a sustained ischemic insult. The purpose of the present study was to evaluate the local and systemic anti-inflammatory effects of hind limb IPC in male Wistar rat (200-250 g) models of acute inflammation. IPC was induced with right hind limb ischemia for 10 min by placing an elastic rubber band tourniquet on the proximal part of the limb followed by 30 min of reperfusion. Groups (N = 6-8) were submitted to right or left paw edema (PE) with carrageenan (100 µg) or Dextran (200 µg), hemorrhagic cystitis with ifosfamide (200 mg/kg, ip) or gastric injury (GI) with indomethacin (20 mg/kg, vo). Controls received similar treatments, without IPC (Sham-IPC). PE is reported as variation of paw volume (mL), vesical edema (VE) as vesical wet weight (mg), vascular permeability (VP) with Evans blue extravasation (µg), GI with the gastric lesion index (GLI; total length of all erosions, mm), and neutrophil migration (NM) from myeloperoxidase activity. The statistical significance (P < 0.05) was determined by ANOVA, followed by the Tukey test. Carrageenan or Dextran-induced PE and VP in either paw were reduced by IPC (42-58.7%). IPC inhibited VE (38.8%) and VP (54%) in ifosfamide-induced hemorrhagic cystitis. GI and NM induced by indomethacin were inhibited by IPC (GLI: 90.3%; NM: 64%). This study shows for the first time that IPC produces local and systemic anti-inflammatory effects in models of acute inflammation other than ischemia-reperfusion injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5) expressing three proteins (E7, E6, and E5) of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id) route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose) induced a strong activation of E7-specific interferon-γ (INF-γ)-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lopap, found in the bristles of Lonomia obliqua caterpillar, is the first exogenous prothrombin activator that shows serine protease-like activity, independent of prothrombinase components and unique lipocalin reported to interfere with hemostasis mechanisms. To assess the action of an exogenous prothrombin activator reversing the anticoagulant and antihemostatic effect induced by low molecular weight heparin (LMWH), male New Zealand rabbits (N = 20, weighing 3.8-4.0 kg) allocated to 4 groups were anticoagulated with 1800 IU/kg LMWH (iv) over 2 min, followed by iv administration of saline (SG) or recombinant Lopap (rLopap) at 1 µg/kg (LG1) or 10 µg/kg (LG10), 10 min after the injection of LMWH, in a blind manner. Control animals (CG) were treated only with saline. The action of rLopap was assessed in terms of activated partial thromboplastin time (aPTT), prothrombin fragment F1+2, fibrinogen, and ear puncture bleeding time (BT) at 5, 10, 15, 17, 20, 30, 40, 60, and 90 min after initiation of LMWH infusion. LG10 animals showed a decrease of aPTT in more than 50% and BT near to normal baseline. The level of prothrombin fragment F1+2 measured by ELISA had a 6-fold increase with rLopap treatment (10 µg/kg) and was inversely proportional to BT in LMWH-treated animals. Thus, Lopap, obtained in recombinant form using E. coli expression system, was useful in antagonizing the effect of LMWH through direct prothrombin activation, which can be a possible strategy for the reversal of bleeding and anticoagulant events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitro-fatty acids are formed and detected in human plasma, cell membranes, and tissue, modulating metabolic as well as inflammatory signaling pathways. Here we discuss the mechanisms of nitro-fatty acid formation as well as their key chemical and biochemical properties. The electrophilic properties of nitro-fatty acids to activate anti-inflammatory signaling pathways are discussed in detail. A critical issue is the influence of nitroarachidonic acid on prostaglandin endoperoxide H synthases, redirecting arachidonic acid metabolism and signaling. We also analyze in vivo data supporting nitro-fatty acids as promising pharmacological tools to prevent inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the in vitro antibacterial and in vivo anti-inflammatory properties of a hydroethanolic extract of the aerial parts of Gochnatia pulchra (HEGP). It also describes the antibacterial activity of HEGP fractions and of the isolated compounds genkwanin, scutellarin, apigenin, and 3,5-O-dicaffeoylquinic acid, as evaluated by a broth microdilution method. While HEGP and its fractions did not provide promising results, the isolated compounds exhibited pronounced antibacterial activity. The most sensitive microorganism was Streptococcus pyogenes, with minimum inhibitory concentration (MIC) values of 100, 50 and 25 µg/mL for genkwanin and the flavonoids apigenin and scutellarin, respectively. Genkwanin produced an MIC value of 25 µg/mL against Enterococcus faecalis. A paw edema model in rats and a pleurisy inflammation model in mice aided investigation of the anti-inflammatory effects of HEGP. This study also evaluated the ability of HEGP to modulate carrageenan-induced interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) production. Orally administered HEGP (250 and 500 mg/kg) inhibited carrageenan-induced paw edema. Regarding carrageenan-induced pleurisy, HEGP at 50, 100, and 250 mg/kg diminished leukocyte migration by 71.43%, 69.24%, and 73.34% (P<0.05), respectively. HEGP suppressed IL-1β and MCP-1 production by 55% and 50% at 50 mg/kg (P<0.05) and 60% and 25% at 100 mg/kg (P<0.05), respectively. HEGP abated TNF-α production by macrophages by 6.6%, 33.3%, and 53.3% at 100, 250, and 500 mg/kg (P<0.05), respectively. HEGP probably exerts anti-inflammatory effects by inhibiting production of the pro-inflammatory cytokines TNF-α, IL-1β, and MCP-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiopulmonary bypass (CPB) with extracorporeal circulation produces changes in the immune system accompanied by an increase in proinflammatory cytokines and a decrease in anti-inflammatory cytokines. We hypothesize that dexmedetomidine (DEX) as an anesthetic adjuvant modulates the inflammatory response after coronary artery bypass graft surgery with mini-CPB. In a prospective, randomized, blind study, 12 patients (4 females and 8 males, age range 42-72) were assigned to DEX group and compared with a conventional total intravenous anesthesia (TIVA) group of 11 patients (4 females and 7 males). The endpoints used to assess inflammatory and biochemical responses to mini-CPB were plasma interleukin (IL)-1, IL-6, IL-10, interferon (INF)-γ, tumor necrosis factor (TNF)-α, C-reactive protein, creatine phosphokinase, creatine phosphokinase-MB, cardiac troponin I, cortisol, and glucose levels. These variables were determined before anesthesia, 90 min after beginning CPB, 5 h after beginning CPB, and 24 h after the end of surgery. Endpoints of oxidative stress, including thiobarbituric acid reactive species and delta-aminolevulinate dehydratase activity in erythrocytes were also determined. DEX+TIVA use was associated with a significant reduction in IL-1, IL-6, TNF-α, and INF-γ (P<0.0001) levels compared with TIVA (two-way ANOVA). In contrast, the surgery-induced increase in thiobarbituric acid reactive species was higher in the DEX+TIVA group than in the TIVA group (P<0.01; two-way ANOVA). Delta-aminolevulinate dehydratase activity was decreased after CPB (P<0.001), but there was no difference between the two groups. DEX as an adjuvant in anesthesia reduced circulating IL-1, IL-6, TNF-α, and INF-γ levels after mini-CPB. These findings indicate an interesting anti-inflammatory effect of DEX, which should be studied in different types of surgical interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affiliation: Faculté de pharmacie, Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroARN (miARN) ont récemment émergé comme un acteur central du gène réseau de régulation impliqués dans la prise du destin cellulaire. L'apoptose, un actif processus, par lequel des cellules déclenchent leur auto-destruction en réponse à un signal, peut être contrôlé par les miARN. Il a également été impliqué dans une variété de maladies humaines, comme les maladies du cœur, et a été pensé comme une cible pour le traitement de la maladie. Tanshinone IIA (TIIA), un monomère de phenanthrenequinones utilisé pour traiter maladies cardiovasculaires, est connu pour exercer des effets cardioprotecteurs de l'infarctus du myocarde en ciblant l'apoptose par le renforcement de Bcl-2 expression. Pour explorer les liens potentiels entre le miARN et l'action anti-apoptotique de TIIA, nous étudié l'implication possible des miARN. Nous avons constaté que l'expression de tous les trois membres de la famille miR-34, miR-34a, miR-34b et miR-34c ont été fortement régulée à la hausse après l'exposition soit à la doxorubicine, un agent endommageant l'ADN ou de pro-oxydant H2O2 pendant 24 heures. Cette régulation à la hausse causé significativement la mort cellulaire par apoptose, comme déterminé par fragmentation de l'ADN, et les effets ont été renversés par les ARNs antisens de ces miARN. Le prétraitement des cellules avec TIIA avant l'incubation avec la doxorubicine ou H2O2 a empêché surexpression de miR-34 et a réduit des apoptose. Nous avons ensuite établi BCL2L2, API5 et TCL1, en plus de BCL2, comme les gènes nouveaux cibles pour miR-34. Nous avons également élucidé que la répression des ces gènes par MiR-34 explique l'effet proapoptotique dans les cardiomyocytes. Ce que la régulation positive de ces gènes par TIIA realisée par la répression de l'expression de miR-34 est probable le mécanisme moléculaire de son effet bénéfique contre ischémique lésions cardiaques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroinflammation plays an integral role in the progression of neurodegeneration. In this study we investigated the anti-inflammatory effects of different classes of flavonoids (flavanones, flavanols and anthocyanidins) in primary mixed glial cells. We found that the flavanones naringenin and hesperetin and the flavols (+)-catechin and (-)-epicatechin, but not the anthocyanidins cyanidin and pelargonidin, attenuated LPS/IFN-gamma-induced TNF-alpha production in glial cells. Naringenin also inhibited LPS/IFN-gamma-induced iNOS expression and nitric oxide production in glial cells, thus showing the strongest antiinflammatory activity among all flavonoids tested. Moreover, naringenin protected against inflammatory-induced neuronal death in a primary neuronal-glial co-culture system. Naringenin also inhibited LPS/IFN-gamma-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation and downstream signal transducer and activator of transcription-1 (STAT-1) in LPS/IFN-gamma stimulated primary mixed glial cells. Taken together, our results suggest that naringenin may produce an anti-inflammatory effect in LPS/IFN-gamma stimulated glial cells that may be due to its interaction with p38 signalling cascades and the STAT-I trascription factor. (C) 2009 Elseiver Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: In recent years the use of anthraquinone laxatives, in particular senna, has been associated with damage to the intestinal epithelial layer and an increased risk of developing colorectal cancer. In the present study we evaluated the cytotoxicity of rhein, the active metabolite of senna, on human colon adenocarcinoma cells (Caco-2) and its effect on cell proliferation. Methods: Cytotoxicity studies were performed using MTT, NR and TEER assays whereas 3H-thymidine incorporation and western blot analysis were used to evaluate the effect of rhein on cell proliferation. Moreover, for genoprotection studies Comet assay and oxidative biomarkers measurement (malondialdehyde and reactive oxygen species) were used. Results: Rhein (0.1-10μg/ml) had no significant cytotoxic effect on proliferating and differentiated Caco-2 cells. Rhein (0.1 and 1 μg/ml) significantly reduced cell proliferation as well as MAP kinase activation; by contrast, at the high concentration (10μg/ml) rhein significantly increased cell proliferation and ERK phosphorylation. Moreover, rhein (0.1-10μg/ml) (i) did not adversely affect the integrity of tight junctions and hence epithelial barrier function, (ii) did not induce DNA damage rather it was able to reduce H2O2-induced DNA damage and (iii) significantly inhibited the increase in malondialdehyde and ROS levels induced by H2O2/Fe2+. Conclusions: Rhein, was devoid of cytotoxic and genotoxic effects in colon adenocarcinoma cells. Moreover, at concentrations present in the colon after a human therapeutic dosage of senna, rhein inhibited cell proliferation via a mechanism which seems to involve directly the MAP kinase pathway. Finally, rhein prevents the DNA damage probably via an anti-oxidant mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Aspirin therapy is usually continued throughout the perioperative period to reduce the risk for thromboembolic stroke and myocardial infarction after carotid endarterectomy (CEA). Aspirin irreversibly binds cyclooxygenase-1, thereby reducing platelet aggregation for the lifetime of each platelet. However, recent research from this unit has shown that aggregation in response to arachidonic acid increases significantly, but transiently, during CEA, which suggests that the anti-platelet effect of aspirin is temporarily reversed. The purpose of the current study was to determine when this phenomenon occurs and to identify the possible mechanisms involved. METHODS: Platelet aggregation was measured in platelet-rich plasma from 41 patients undergoing CEA who were stabilized with 150 mg of aspirin daily. Blood was taken at 8 time points: before anesthesia, after anesthesia, before heparinization, 3 minutes after heparinization, 3 minutes after shunt insertion, 10 minutes after flow restoration, 4 hours postoperatively, and 24 hours postoperatively. Platelet aggregation was also measured at similar times in a group of 18 patients undergoing peripheral angioplasty without general anesthesia. RESULTS: All patient platelets were effectively inhibited by aspirin at the start of the operation. There was a significant intraoperative increase in platelet response to arachidonic acid in both groups of patients, which occurred within 3 minutes of administration of unfractionated heparin. In the CEA group this resulted in a greater than 10-fold increase in mean aggregation, to 5 mmol/L of arachidonic acid (5 mmol/L), rising from 3.9% +/- 2.2% preoperatively to 45.1% +/- 29.3% after administration of heparin ( P <.0001). This increased aggregation persisted into the early postoperative period, but by 24 hours post operation aggregation had returned to near preoperative values. Aggregation in response to other platelet agonists (adenosine diphosphate, thrombin receptor agonist peptide) showed only a small increase at the same time, which could be accounted for by a parallel increase in the level of spontaneous aggregation. CONCLUSION: Administration of heparin significantly increases platelet aggregation in response to arachidonic acid, despite adequate inhibition by aspirin administered preoperatively. This apparent reversal in anti-platelet activity persisted into the immediate early postoperative period, and could explain why a small proportion of patients are at increased risk for acute cardiovascular events after major vascular surgery, despite aspirin therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the study: Magnolia ovata (A.St.-Hil.) Spreng (formerly Talauma ovata), known as ""pinha-do-brejo"" or ""baguacu"", is a large tree widely distributed in Brazil. Its trunk bark has been used in folk medicine against fever. However, no data have been published to support the antipyretic ethnopharmacological use. This study investigated the antipyretic and anti-inflammatory effects of the ethanolic extract (EEMO). dichloromethane fraction (DCM), and the isolated compound costunolide. Materials and methods: The antipyretic and anti-inflammatory activities were evaluated in experimental models of fever and inflammation in mice. Results: The oral administration of EEMO, DCM and costunolide inhibited carrageenan (Cg)-induced paw oedema (ID(50) 72.35 (38.64-135.46) mg/kg, 5.8 (2.41-14.04) mg/kg and 0.18 (0.12-0.27) mg/kg, respectively) and was effective in abolishing lipopolysaccharide (LPS)-induced fever (30 mg/kg, 4.5 mg/kg and 0.15 mg/kg, respectively). EEMO was also effective in reducing cell migration in the pleurisy model. Intraplantar injection of costunolide also reduced the paw oedema, myeloperoxidase and N-acetyl-glucosaminidase activity induced by Cg in mice. Conclusions: Collectively, these results show, for the first time, that extracts obtained from Magnolia ovata possess antipyretic and anti-inflammatory properties, and costunolide appears to be the compound responsible for these effects. (C) 2009 Elsevier Ireland Ltd. All rights reserved.