903 resultados para Anaerobic sequential batch reactor
Resumo:
La producció de biopolímers (polihidroxialcanoats (PHA) i substàncies polimèriques extracel·lulars (EPS)) a nivell industrial, resulta una nova àrea d’investigació que recull diverses disciplines, entre elles les Ciències Ambientals. Aquest projecte final de carrera amb el títol: “Producció de biopolímers amb cultius bacterians mixtes”, s’ha desenvolupat sota la supervisió de la directora de projecte Dra. María Eugenia Suárez Ojeda del Departament d’Enginyeria Química de la Universitat Autònoma de Barcelona (UAB) i s’ha dut a terme per l’estudiant Jordi Pérez i Forner de la Llicenciatura de Ciències Ambientals, Facultat de Ciències de la UAB, en el Departament d’Enginyeria Química de la mateixa universitat. L’objectiu d’aquest projecte ha estat produir biopolímers simultàniament amb l’eliminació de fòsfor i matèria orgànica en aigües residuals per obtenir un residu final amb un alt valor afegit. Aquests biopolímers reuneixen les característiques necessàries per a poder competir amb els plàstics convencionals i així, reduir l’elevat consum del petroli i la generació de residus no biodegradables. En aquest projecte s’ha dut a terme la posta en marxa d’un reactor discontinu seqüencial (SBR) per a l’acumulació de biopolímers amb cultius bacterians mixtes. Diferents investigadors han estudiat que aquests tipus de cultius bacterians arriben a nivells de fins el 53-97% [Pijuan et al., 2009] de contingut de biopolímers a la biomassa, sometent als microorganismes a diferents situacions d’estrés ja sigui per dèficit de nutrients o per variacions en les fases de feast-famine (festí-fam). Durant el projecte, s’ha realitzat el monitoratge del reactor alimentat amb una aigua sintètica, elaborada en el laboratori, amb les característiques d’un aigua residual provinent de la industria làctica. S’ha sotmès als microorganismes a diferents condicions operacionals, una d’elles amb limitació de fòsfor com a nutrient i una tercera condició amb una variació a les fases feast-famine. D’altra banda, com a segon objectiu, s’ha analitzat el contingut de biopolímers a la biomassa de dos SBRs més, del grup de recerca Bio-GLS del Departament d’Enginyeria Química de la UAB, alimentats amb diferents fonts de carboni, glicerol i àcids grassos de cadena llarga (AGCLL), per observar les influències que té el tipus de substrat en l’acumulació de biopolímers. Els resultats obtinguts en la primera part d’aquest projecte han estat similars als resultats d’altres investigadors [Pijuan et al., 2009; Guerrero et al., 2012]. S’ha determinat que sotmetre als microorganismes a situacions d’estrés té un efecte directe pel que fa a l’acumulació de biopolímers. També s’ha observat com al mateix temps que acumulaven aquests compostos, els microorganismes desenvolupaven la seva tasca de depurar l’aigua residual, obtenint al final del cicle una aigua amb un baix contingut en matèria orgànica i altres contaminants com amoni i fòsfor, en aquest cas. En la segona part del projecte, s’ha observat com el tipus de substrat té un efecte directe pel que fa a l’acumulació de biopolímers i també a l’activitat metabòlica dels microorganismes. Per tant, s’ha conclòs que la producció de biopolímers mitjançant la depuració d’aigües residuals es una via d’investigació molt prometedora pel que fa als resultats obtinguts. Alhora que es tracta un residu, s’obté una producte residual amb un alt valor afegit que pot ser utilitzat per la producció de bioplàstics 100% biodegradables.
Resumo:
Laktoosi eli maitosokeri on tärkein ainesosa useimpien nisäkkäiden tuottamassa maidossa. Sitä erotetaan herasta, juustosta ja maidosta. Laktoosia käytetään elintarvike- ja lääketeollisuuden raaka-aineena monissaeri tuotteissa. Lääketeollisuudessa laktoosia käytetään esimerkiksi tablettien täyteaineena. Hapettamalla laktoosia voidaan valmistaa laktobionihappoa, 2-keto-laktobionihappoa ja laktuloosia. Laktobionihappoa käytetään biohajoavien pintojen ja kosmetiikkatuotteiden valmistuksessa, sekä sisäelinten säilöntäliuoksissa, joissa laktobionihappo estää happiradikaalien aiheuttamien kudosvaurioiden syntymistä. Tässä työssä laktoosia hapetettiin laktobionihapoksi sekoittimella varustetussa laboratoriomittakaavaisessa panosreaktorissa käyttäenkatalyyttinä palladiumia aktiivihiilellä. Muutamissa kokeissa katalyytin promoottorina käytettiin vismuttia, joka hidastaa katalyytin deaktivoitumista. Työn tarkoituksena oli saada lisää tietoa laktoosin hapettamisen kinetiikasta. Laktoosin hapettumisessa laktobionihapoksi havaittiin selektiivisyyteen vaikuttavan muunmuassa reaktiolämpötila, paine, pH ja käytetyn katalyytin määrä. Katalyyttiä kierrättämällä eri kokeiden välillä saatiin paremmat konversiot, selektiivisyydet ja saannot. Parhaat koetulokset saatiin hapetettaessa synteettisellä ilmalla 60 oC lämpötilassa ja 1 bar paineessa. Tehdyissä kokeissa pH:n säätö tehtiin manuaalisesti, joten pH ei pysynyt koko ajan haluttuna. Laktoosin konversio oli parhaimmillaan 95 %. Laktobionihapon suhteellinen selektiivisyys oli 100% ja suhteellinen saanto 100 %. Kinetiikan matemaattinen mallinnus tehtiin Modest-ohjelmalla käyttäen kokeista saatuja mittaustuloksia.Ohjelman avulla estimoitiin parametreja ja saatiin matemaattinen malli reaktorille. Tässä työssä tehtiin kineettinen mallinnus myös ravistelureaktorissa tehdyille laktoosin hapetuskokeille, missä pH pysyi koko ajan haluttuna 'in-situ' titrauksen avulla. Työn yhteydessä selvitettiin myös mahdollisuutta käyttää monoliittikatalyyttejä laktoosin hapetusreaktiossa.
Resumo:
Työssä tutkittiin sakkaroosin hydrolyysiä anioninvaihtohartseihin immobilisoidun entsyymin avulla tavoitteena löytää sellainen kantaja-entsyymi -yhdistelmä, jolla konversio halutuiksi lopputuotteiksi olisi mahdollisimman korkea. Työhön valittiin aikaisemmissa laboratoriokokeissa parhaita tuloksia saavuttaneet kantaja-entsyymi -parit. Entsyymeinä oli kaksi nestemäistä Saccharomyces cerevisiae -hiivasta eristettyjä entsyymivalmistetta. Kokeissa käytetyt kantajamateriaalit olivat erilaisia heikkoja anioninvaihtohartseja. Entsyymit immobilisoitiin kantajaan sekoitusreaktorissa ja niiden aktiivisuudet määritettiin sitomisen jälkeen. Hydrolyysikokeet tehtiin jatkuvatoimisessa kiintopetireaktorissa ja lisäksi panos-kokeina tutkittiin ominaisuuksiltaan erilaisten kantajien eroja hydrolyysissä. Reaktio-olosuhteet pidettiin kaikissa kokeissa samoina. Sakkaroosiliuoksen pitoisuus oli 50 p-%, reaktiolämpötila 50 oC ja pH 5. Kiintopetikolonnissa tutkittiin myös sakkaroosi-liuoksen viipymäajan vaikutusta sivutuotteiden syntyyn. Näytteet analysoitiin neste-kromatografilla. Kiintopetikolonnissa lyhimmän viipymäajan (15 min) kokeissa ainoastaan hitaimmilla kantaja-entsyymi -pareilla muodostui sivutuotteita, jotka hydrolyysireaktion edetessä kuitenkin hävisivät. Kun viipymäaikaa kasvatettiin sivutuotteiden synty väheni ja lopulta niitä ei havaittu syntyvän lainkaan. Hydrolyysin edetessä viipymäajan ollessa tarpeeksi pitkä pienet sivutuotekomponentit hävisivät sakkaroosin hajotessa kokonaan glukoosiksi ja fruktoosiksi. Verrattaessa partikkelikoon ja hartsimatriisin vaikutusta samaan entsyymiin sidottuna havaittiin, että niillä kummallakin on vaikutusta sekä sakkaroosin hydrolyysi-nopeuteen että sivutuotteiden muodostumiseen.
Resumo:
The production of cashew apple wine has the purpose of minimizing the wastage in the Brazilian cashew production. Knowing that the cashew apple fermentation produces a good cashew wine, a study of alcoholic fermentation kinetics of the cashew apple and the physico-chemical characterization of the product were made. The cashew wine was produced in an stirred batch reactor. The results of the physico-chemical analysis of volatiles, residual sugars, total acidity and pH of cashew wine showed that their concentrations were within the standard limits established by the Brazilian legislation for fruit wines.
Resumo:
The tebuconazole photocatalytic degradation kinetics was studied in a batch reactor using TiO2 (P25-Degussa) as catalyst and a high pressure mercury lamp. The photolysis, adsorption and irradiation effects in the reaction rate were evaluated. Afterward, the suspension catalyst concentration and initial pH to the maximum reaction rate was determined. It was observed that the reaction rate can be approached by a pseudo-first order, with a maximum kinetics constant at 260 mg L-1catalyst concentration and pH 7.7.
Resumo:
Soybean oil transesterification with ethanol was carried out in a batch reactor using USY zeolites modified with barium and strontium (15 wt.%) as catalysts. A series of three catalytic cycles were performed for each zeolite without any loss of activity. The biodiesel product was analyzed by HPLC and FT-Raman, and the catalysts by pyridine and CO2 adsorption. Ba/USY provided higher conversions (> 97%) than Sr/USY (< 75%). The increased catalytic activity of Ba/USY was attributed to two different effects: a larger number of basic sites; and a lower interaction between barium species and HUSY BrØnsted sites.
Resumo:
Titanium dioxide nanostructured catalysts (nanotubes) doped with different metals (silver, gold, copper, palladium and zinc) were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.
Resumo:
The development of new technologies to supplement fossil resources has led to a growing interest in the utilization of alternative routes. Biomass is a rich renewable feedstock for producing fine chemicals, polymers, and a variety of commodities replacing petroleumderived chemicals. Transformation of biomass into diverse valuable chemicals is the key concept of a biorefinery. Catalytic conversion of biomass, which reduces the use of toxic chemicals is one of the important approaches to improve the profitability of biorefineries. Utilization of gold catalysts allows conducting reactions under environmentally-friendly conditions, with a high catalytic activity and selectivity. Gold-catalyzed valorization of several biomass-derived compounds as an alternative approach to the existing technologies was studied in this work. Isomerization of linoleic acid via double bond migration towards biologically active conjugated linoleic acid isomers (CLA) was investigated. The activity and selectivity of various gold catalysts towards cis-9,trans-11-CLA and trans-10,cis-12-CLA were investigated in a semi-batch reactor, showing that the yield of the desired products varied, depending on the catalyst support. The structure sensitivity in the selective oxidation of arabinose was demonstrated using a series of gold catalysts with different Au cluster sizes in a shaker reactor operating in a semibatch mode. The gas-phase selective oxidation of ethanol was studied and the influence of the catalyst support on the catalytic performance was investigated. The selective oxidation of the lignan hydroxymatairesinol (HMR), extracted from the Norway spruce (Picea abies) knots, to the lignan oxomatairesinol (oxoMAT) was extensively investigated. The influence of the reaction conditions and catalyst properties on the yield of oxoMAT was evaluated. In particular, the structure sensitivity of the reaction was demonstrated. The catalyst deactivation and regeneration procedures were studied. The reaction kinetics and mechanism were advanced.
Resumo:
Asymmetric synthesis using modified heterogeneous catalysts has gained lots of interest in the production of optically pure chemicals, such as pharmaceuticals, nutraceuticals, fragrances and agrochemicals. Heterogeneous modified catalysts capable of inducing high enantioselectivities are preferred in industrial scale due to their superior separation and handling properties. The topic has been intensively investigated both in industry and academia. The enantioselective hydrogenation of ethyl benzoylformate (EBF) to (R)-ethyl mandelate over (-)-cinchonidine (CD)-modified Pt/Al2O3 catalyst in a laboratory-scale semi-batch reactor was studied as a function of modifier concentration, reaction temperature, stirring rate and catalyst particle size. The main product was always (R)-ethyl mandelate while small amounts of (S)-ethyl mandelate were obtained as by product. The kinetic results showed higher enantioselectivity and lower initial rates approaching asymptotically to a constant value as the amount of modifier was increased. Additionally, catalyst deactivation due to presence of impurities in the feed was prominent in some cases; therefore activated carbon was used as a cleaning agent of the raw material to remove impurities prior to catalyst addition. Detailed characterizations methods (SEM, EDX, TPR, BET, chemisorption, particle size distribution) of the catalysts were carried out. Solvent effects were also studied in the semi-batch reactor. Solvents with dielectric constant (e) between 2 and 25 were applied. The enantiomeric excess (ee) increased with an increase of the dielectric coefficient up to a maximum followed by a nonlinear decrease. A kinetic model was proposed for the enantioselectivity dependence on the dielectric constant based on the Kirkwood treatment. The non-linear dependence of ee on (e) successfully described the variation of ee in different solvents. Systematic kinetic experiments were carried out in the semi-batch reactor. Toluene was used as a solvent. Based on these results, a kinetic model based on the assumption of different number of sites was developed. Density functional theory calculations were applied to study the energetics of the EBF adsorption on pure Pt(1 1 1). The hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison between the model and the experimental data revealed a very good correspondence. Transient experiments in a fixed-bed reactor were also carried out in this work. The results demonstrated that continuous enantioselective hydrogenation of EBF in hexane/2-propanol 90/10 (v/v) is possible and that continuous feeding of (-)-cinchonidine is needed to maintain a high steady-state enantioselectivity. The catalyst showed a good stability and high enantioselectivity was achieved in the fixed-bed reactor. Chromatographic separation of (R)- and (S)-ethyl mandelate originating from the continuous reactor was investigated. A commercial column filled with a chiral resin was chosen as a perspective preparative-scale adsorbent. Since the adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for the isomers present in a post-reaction mixture. Breakthrough curves were measured and described successfully by the dispersive plug flow model with a linear driving force approximation. The focus of this research project was the development of a new integrated production concept of optically active chemicals by combining heterogeneous catalysis and chromatographic separation technology. The proposed work is fundamental research in advanced process technology aiming to improve efficiency and enable clean and environmentally benign production of enantiomeric pure chemicals.
Resumo:
Nowadays, the re-refining of the used lube oils has gained worldwide a lot of attention due to the necessity for added environmental protection and increasingly stringent environmental legislation. One of the parameters determining the quality of the produced base oils is the composition of feedstock. Estimation of the chemical composition of the used oil collected from several European locations showed that the hydrocarbon structure of the motor oil is changed insignificantly during its operation and the major part of the changes is accounted for with depleted oil additives. In the lube oil re-refining industry silicon, coming mainly from antifoaming agents, is recognized to be a contaminant generating undesired solid deposits in various locations in the re-refining units. In this thesis, a particular attention was paid to the mechanism of solid product formation during the alkali treatment process of silicon-containing used lube oils. The transformations of a model siloxane, tetramethyldisiloxane (TMDS), were studied in a batch reactor at industrially relevant alkali treatment conditions (low temperature, short reaction time) using different alkali agents. The reaction mechanism involving solid alkali metal silanolates was proposed. The experimental data obtained demonstrated that the solids were dominant products at low temperature and short reaction time. The liquid products in the low temperature reactions were represented mainly by linear siloxanes. The prolongation of reaction time resulted in reduction of solids, whereas both temperature and time increase led to dominance of cyclic products in the reaction mixture. Experiments with the varied reaction time demonstrated that the concentration of cyclic trimer being the dominant in the beginning of the reaction diminished with time, whereas the cyclic tetramer tended to increase. Experiments with lower sodium hydroxide concentration showed the same effect. In addition, a decrease of alkali agent concentration in the initial reaction mixture accelerated TMDS transformation reactions resulting in solely liquid cyclic siloxanes yields. Comparison of sodium and potassium hydroxides applied as an alkali agent demonstrated that potassium hydroxide was more efficient, since the activation energy in KOH presence was almost 2-fold lower than that for sodium hydroxide containing reaction mixture. Application of potassium hydroxide for TMDS transformation at 100° C with 3 hours reaction time resulted in 20 % decrease of solid yields compared to NaOH-containing mixture. Moreover, TMDS transformations in the presence of sodium silanolate applied as an alkali agent led to formation of only liquid products without formation of the undesired solids. On the basis of experimental data and the proposed reaction mechanism, a kinetic model was developed, which provided a satisfactory description of the experimental results. Suitability of the selected siloxane as a relevant model of industrial silicon-containing compounds was verified by investigation of the commercially available antifoam agent in base-catalyzed conditions.
Resumo:
Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.
Resumo:
Sustainability and recycling are core values in today’s industrial operations. New materials, products and processes need to be designed in such a way as to consume fewer of the diminishing resources we have available and to put as little strain on the environment as possible. An integral part of this is cleaning and recycling. New processes are to be designed to improve the efficiency in this aspect. Wastewater, including municipal wastewaters, is treated in several steps including chemical and mechanical cleaning of waters. Well-cleaned water can be recycled and reused. Clean water for everyone is one of the greatest challenges we are facing today. Ferric sulphate, made by oxidation from ferrous sulphate, is used in water purification. The oxidation of ferrous sulphate, FeSO4, to ferric sulphate in acidic aqueous solutions of H2SO4 over finely dispersed active carbon particles was studied in a vigorously stirred batch reactor. Molecular oxygen was used as the oxidation agent and several catalysts were screened: active carbon, active carbon impregnated with Pt, Rh, Pd and Ru. Both active carbon and noble metal-active carbon catalysts enhanced the oxidation rate considerably. The order of the noble metals according to the effect was: Pt >> Rh > Pd, Ru. By the use of catalysts, the production capacities of existing oxidation units can be considerably increased. Good coagulants have a high charge on a long polymer chain effectively capturing dirty particles of the opposite charge. Analysis of the reaction product indicated that it is possible to obtain polymeric iron-based products with good coagulation properties. Systematic kinetic experiments were carried out at the temperature and pressure ranges of 60B100°C and 4B10 bar, respectively. The results revealed that both non-catalytic and catalytic oxidation of Fe2+ to Fe3+ take place simultaneously. The experimental data were fitted to rate equations, which were based on a plausible reaction mechanism: adsorption of dissolved oxygen on active carbon, electron transfer from Fe2+ ions to adsorbed oxygen and formation of surface hydroxyls. A comparison of the Fe2+ concentrations predicted by the kinetic model with the experimentally observed concentrations indicated that the mechanistic rate equations were able to describe the intrinsic oxidation kinetics of Fe2+ over active carbon and active carbon-noble metal catalysts. Engineering aspects were closely considered and effort was directed to utilizing existing equipment in the production of the new coagulant. Ferrous sulphate can be catalytically oxidized to produce a novel long-chained polymeric iron-based flocculent in an easy and affordable way in existing facilities. The results can be used for modelling the reactors and for scale-up. Ferric iron (Fe3+) was successfully applied for the dissolution of sphalerite. Sphalerite contains indium, gallium and germanium, among others, and the application can promote their recovery. The understanding of the reduction process of ferric to ferrous iron can be used to develop further the understanding of the dissolution mechanisms and oxidation of ferrous sulphate. Indium, gallium and germanium face an ever-increasing demand in the electronics industry, among others. The supply is, however, very limited. The fact that most part of the material is obtained through secondary production means that real production quota depends on the primary material production. This also sets the pricing. The primary production material is in most cases zinc and aluminium. Recycling of scrap material and the utilization of industrial waste, containing indium, gallium and geranium, is a necessity without real options. As a part of this study plausible methods for the recovery of indium, gallium and germanium have been studied. The results were encouraging and provided information about the precipitation of these valuables from highly acidic solutions. Indium and gallium were separated from acidic sulphuric acid solutions by precipitation with basic sulphates such as alunite or they were precipitated as basic sulphates of their own as galliunite and indiunite. Germanium may precipitate as a basic sulphate of a mixed composition. The precipitation is rapid and the selectivity is good. When the solutions contain both indium and gallium then the results show that gallium should be separated before indium to achieve a better selectivity. Germanium was separated from highly acidic sulphuric acid solutions containing other metals as well by precipitating with tannic acid. This is a highly selective method. According to the study other commonly found metals in the solution do not affect germanium precipitation. The reduction of ferric iron to ferrous, the precipitation of indium, gallium and germanium, and the dissolution of the raw materials are strongly depending on temperature and pH. The temperature and pH effect were studied and which contributed to the understanding and design of the different process steps. Increased temperature and reduced pH improve the reduction rate. Finally, the gained understanding in the studied areas can be employed to develop better industrial processes not only on a large scale but also increasingly on a smaller scale. The small amounts of indium, gallium and germanium may favour smaller and more locally bound recovery.
Resumo:
Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. Km was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.
Resumo:
Invertase was adsorbed onto micro-porous acid-activated montmorillonite clay (K-10) by two procedures, namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, surface area measurements and 27Al NMR. XRD measurements revealed an expansion of clay layers due to immobilization which suggests that intercalation had taken place. Surface area measurements also support this observation. 27Al NMR showed that interaction of enzyme with tetrahedral and octahedral Al changes with the immobilization procedure. Sucrose hydrolysis was performed in a batch reactor. The immobilized enzymes showed enhanced pH and thermal stabilities. Optimum pH and temperature were found to increase upon immobilization. The effectiveness factor (η) and Michaelis constant (Km) suggest that diffusional resistances play a major role in the reaction. The immobilized invertase could be stored in buffer of pH 5 and 6 at 5 °C without any significant loss in activity for 20 days.
Resumo:
Invertase was immobilised on microporous montmorillonite K-10 via adsorption and covalent binding. The immobilised enzymes were tested for sucrose hydrolysis activity in a batch reactor. Km for immobilised systems was greater than free enzyme. The immobilised forms could be reused for 15 continuous cycles without any loss in activity. After 25 cycles, 85% initial activity was retained. A study on leaching of enzymes showed that 100% enzyme was retained even after 15 cycles of reuse. Leaching increased with reaction temperature. Covalent binding resisted leaching even at temperatures of 70 °C.