1000 resultados para Análise de sinal eletromiográfico
Resumo:
The great amount of data generated as the result of the automation and process supervision in industry implies in two problems: a big demand of storage in discs and the difficulty in streaming this data through a telecommunications link. The lossy data compression algorithms were born in the 90’s with the goal of solving these problems and, by consequence, industries started to use those algorithms in industrial supervision systems to compress data in real time. These algorithms were projected to eliminate redundant and undesired information in a efficient and simple way. However, those algorithms parameters must be set for each process variable, becoming impracticable to configure this parameters for each variable in case of systems that monitor thousands of them. In that context, this paper propose the algorithm Adaptive Swinging Door Trending that consists in a adaptation of the Swinging Door Trending, as this main parameters are adjusted dynamically by the analysis of the signal tendencies in real time. It’s also proposed a comparative analysis of performance in lossy data compression algorithms applied on time series process variables and dynamometer cards. The algorithms used to compare were the piecewise linear and the transforms.
Resumo:
Wireless Communication is a trend in the industrial environment nowadays and on this trend, we can highlight the WirelessHART technology. In this situation, it is natural the search for new improvements in the technology and such improvements can be related directly to the routing and scheduling algorithms. In the present thesis, we present a literature review about the main specific solutions for Routing and scheduling for WirelessHART. The thesis also proposes a new scheduling algorithm called Flow Scheduling that intends to improve superframe utilization and flexibility aspects. For validation purposes, we develop a simulation module for the Network Simulator 3 (NS-3) that models aspects like positioning, signal attenuation and energy consumption and provides an link individual error configuration. The module also allows the creation of the scheduling superframe using the Flow and Han Algorithms. In order to validate the new algorithms, we execute a series of comparative tests and evaluate the algorithms performance for link allocation, delay and superframe occupation. In order to validate the physical layer of the simulation module, we statically configure the routing and scheduling aspects and perform reliability and energy consumption tests using various literature topologies and error probabilities.
Resumo:
Wireless Communication is a trend in the industrial environment nowadays and on this trend, we can highlight the WirelessHART technology. In this situation, it is natural the search for new improvements in the technology and such improvements can be related directly to the routing and scheduling algorithms. In the present thesis, we present a literature review about the main specific solutions for Routing and scheduling for WirelessHART. The thesis also proposes a new scheduling algorithm called Flow Scheduling that intends to improve superframe utilization and flexibility aspects. For validation purposes, we develop a simulation module for the Network Simulator 3 (NS-3) that models aspects like positioning, signal attenuation and energy consumption and provides an link individual error configuration. The module also allows the creation of the scheduling superframe using the Flow and Han Algorithms. In order to validate the new algorithms, we execute a series of comparative tests and evaluate the algorithms performance for link allocation, delay and superframe occupation. In order to validate the physical layer of the simulation module, we statically configure the routing and scheduling aspects and perform reliability and energy consumption tests using various literature topologies and error probabilities.
Resumo:
Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.
Resumo:
Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.
Resumo:
Trace gases are important to our environment even though their presence comes only by ‘traces’, but their concentrations must be monitored, so any necessary interventions can be done at the right time. There are some lower and upper boundaries which produce nice conditions for our lives and then monitoring trace gases comes as an essential task nowadays to be accomplished by many techniques. One of them is the differential optical absorption spectroscopy (DOAS), which consists mathematically on a regression - the classical method uses least-squares - to retrieve the trace gases concentrations. In order to achieve better results, many works have tried out different techniques instead of the classical approach. Some have tried to preprocess the signals to be analyzed by a denoising procedure - e.g. discrete wavelet transform (DWT). This work presents a semi-empirical study to find out the most suitable DWT family to be used in this denoising. The search seeks among many well-known families the one to better remove the noise, keeping the original signal’s main features, then by decreasing the noise, the residual left after the regression is done decreases too. The analysis take account the wavelet decomposition level, the threshold to be applied on the detail coefficients and how to apply them - hard or soft thresholding. The signals used come from an open and online data base which contains characteristic signals from some trace gases usually studied.
Resumo:
Trace gases are important to our environment even though their presence comes only by ‘traces’, but their concentrations must be monitored, so any necessary interventions can be done at the right time. There are some lower and upper boundaries which produce nice conditions for our lives and then monitoring trace gases comes as an essential task nowadays to be accomplished by many techniques. One of them is the differential optical absorption spectroscopy (DOAS), which consists mathematically on a regression - the classical method uses least-squares - to retrieve the trace gases concentrations. In order to achieve better results, many works have tried out different techniques instead of the classical approach. Some have tried to preprocess the signals to be analyzed by a denoising procedure - e.g. discrete wavelet transform (DWT). This work presents a semi-empirical study to find out the most suitable DWT family to be used in this denoising. The search seeks among many well-known families the one to better remove the noise, keeping the original signal’s main features, then by decreasing the noise, the residual left after the regression is done decreases too. The analysis take account the wavelet decomposition level, the threshold to be applied on the detail coefficients and how to apply them - hard or soft thresholding. The signals used come from an open and online data base which contains characteristic signals from some trace gases usually studied.
Resumo:
Data variability analysis has been the focus of a number of studies seeking to capture differences of patterns generated by biological systems. Although several studies related to gait employ the analysis of variability in their observations, we noticed a lack of such information for subjects with unilateral coxarthrosis undergoing total hip arthroplasty (THA). To tackle this deficiency of information, we conducted a study of the gait on a treadmill with10 healthy subjects (30.7 ± 6.75 years old) from G1 and 24 subjects (65 ± 8.5 years old) with unilateral THA from G2. Thus, by means of two inertial measurement units (IMUs) positioned in the pelvis, we have developed a detection method of the step and stride for calculating these intervals and extract the signal characteristics. The variability analysis (coefficient of variation) was performed, taking into consideration the extracted features and the step and stride times. The average and the 95% confidence interval estimate for the average of the step and stride times to each group were in agreement with literature. The mean coefficient of variation for the step and stride times was calculated and compared among groups by the Kruskal-Wallis test with 95% confidence interval. Each component X, Y and Z of the two IMUs (accelerometer, magnetometer and gyroscope) corresponded to a variable. The resultants of each sensor, the linear velocity (accelerometers) and the instantaneous angular displacement (gyroscopes) completed the set of variables. The characteristics were extracted from the signals of these variables to check the variability in the G1 and G2 groups . There were significant differences (p <0.05) between G1 and G2 for the average of the step and stride times. The variability of the step and stride, as well as the variability of all other evaluated characteristics were higher for the group G2 (p <0.05). The method proposed in this study proved to be suitable for the measuring of variability of biomechanical parameters related to the extracted features. All the extracted features categorized the groups. The G2 group showed greater variability, so it is possible that the age and the pathological condition of the hip both contributed to this result.
Resumo:
This work intent to study the motive power provided by the plane linear induction motor, in a lock condition. It uses a method of imposition of the electric current to the stator via a frequency convertor PWM driven by a refed platform. The reading of the motive power was performed by a load cell using an electronic circuit for reading and conditioning of the signal. Aiming a complete analysis of the linear motor, it was performed a computational modeling that employs all relevant parameters to the study of the locked machine. At the end it was held a theoric-experimental confrontation that evaluated the effectiveness of the proposed method.
Resumo:
In this work it was developed mathematical resolutions taking as parameter maximum intensity values for the interference analysis of electric and magnetic fields and was given two virtual computer system that supports families of CDMA and WCDMA technologies. The first family were developed computational resources to solve electric and magnetic field calculations and power densities in Radio Base stations , with the use of CDMA technology in the 800 MHz band , taking into account the permissible values referenced by the Commission International Protection on non-Ionizing Radiation . The first family is divided into two segments of calculation carried out in virtual operation. In the first segment to compute the interference field radiated by the base station with input information such as radio channel power; Gain antenna; Radio channel number; Operating frequency; Losses in the cable; Attenuation of direction; Minimum Distance; Reflections. Said computing system allows to quickly and without the need of implementing instruments for measurements, meet the following calculated values: Effective Radiated Power; Sector Power Density; Electric field in the sector; Magnetic field in the sector; Magnetic flux density; point of maximum permissible exposure of electric field and power density. The results are shown in charts for clarity of view of power density in the industry, as well as the coverage area definition. The computer module also includes folders specifications antennas, cables and towers used in cellular telephony, the following manufacturers: RFS World, Andrew, Karthein and BRASILSAT. Many are presented "links" network access "Internet" to supplement the cable specifications, antennas, etc. . In the second segment of the first family work with more variables , seeking to perform calculations quickly and safely assisting in obtaining results of radio signal loss produced by ERB . This module displays screens representing propagation systems denominated "A" and "B". By propagating "A" are obtained radio signal attenuation calculations in areas of urban models , dense urban , suburban , and rural open . In reflection calculations are present the reflection coefficients , the standing wave ratio , return loss , the reflected power ratio , as well as the loss of the signal by mismatch impedance. With the spread " B" seek radio signal losses in the survey line and not targeted , the effective area , the power density , the received power , the coverage radius , the conversion levels and the gain conversion systems radiant . The second family of virtual computing system consists of 7 modules of which 5 are geared towards the design of WCDMA and 2 technology for calculation of telephone traffic serving CDMA and WCDMA . It includes a portfolio of radiant systems used on the site. In the virtual operation of the module 1 is compute-: distance frequency reuse, channel capacity with noise and without noise, Doppler frequency, modulation rate and channel efficiency; Module 2 includes computes the cell area, thermal noise, noise power (dB), noise figure, signal to noise ratio, bit of power (dBm); with the module 3 reaches the calculation: breakpoint, processing gain (dB) loss in the space of BTS, noise power (w), chip period and frequency reuse factor. Module 4 scales effective radiated power, sectorization gain, voice activity and load effect. The module 5 performs the calculation processing gain (Hz / bps) bit time, bit energy (Ws). Module 6 deals with the telephone traffic and scales 1: traffic volume, occupancy intensity, average time of occupancy, traffic intensity, calls completed, congestion. Module 7 deals with two telephone traffic and allows calculating call completion and not completed in HMM. Tests were performed on the mobile network performance field for the calculation of data relating to: CINP , CPI , RSRP , RSRQ , EARFCN , Drop Call , Block Call , Pilot , Data Bler , RSCP , Short Call, Long Call and Data Call ; ECIO - Short Call and Long Call , Data Call Troughput . As survey were conducted surveys of electric and magnetic field in an ERB , trying to observe the degree of exposure to non-ionizing radiation they are exposed to the general public and occupational element. The results were compared to permissible values for health endorsed by the ICNIRP and the CENELEC .
Resumo:
A redução de dimensionalidade é uma tarefa crucial no processamento e análise de dados hiperespectrais. Esta comunicação propõe um método de estimação do subespaço de sinal baseado no erro quadrático médio. O método consiste em primeiro estimar as matrizes de correlação do sinal e do ruído e em segundo seleccionar o conjunto de vectores próprios que melhor representa o subespaço de sinal. O eficiência deste método é ilustrada em imagens hiperespectrais sintéticas e reais.
Resumo:
Spasticity is a common disorder in people who have upper motor neuron injury. The involvement may occur at different levels. The Modified Ashworth Scale (MAS) is the most used method to measure involvement levels. But it corresponds to a subjective evaluation. Mechanomyography (MMG) is an objective technique that quantifies the muscle vibration during the contraction and stretching events. So, it may assess the level of spasticity accurately. This study aimed to investigate the correlation between spasticity levels determined by MAS with MMG signal in spastic and not spastic muscles. In the experimental protocol, we evaluated 34 members of 22 volunteers, of both genders, with a mean age of 39.91 ± 13.77 years. We evaluated the levels of spasticity by MAS in flexor and extensor muscle groups of the knee and/or elbow, where one muscle group was the agonist and one antagonist. Simultaneously the assessment by the MAS, caught up the MMG signals. We used a custom MMG equipment to register and record the signals, configured in LabView platform. Using the MatLab computer program, it was processed the MMG signals in the time domain (median energy) and spectral domain (median frequency) for the three motion axes: X (transversal), Y (longitudinal) and Z (perpendicular). For bandwidth delimitation, we used a 3rd order Butterworth filter, acting in the range of 5-50 Hz. Statistical tests as Spearman's correlation coefficient, Kruskal-Wallis test and linear correlation test were applied. As results in the time domain, the Kruskal-Wallis test showed differences in median energy (MMGME) between MAS groups. The linear correlation test showed high linear correlation between MAS and MMGME for the agonist muscle as well as for the antagonist group. The largest linear correlation occurred between the MAS and MMG ME for the Z axis of the agonist muscle group (R2 = 0.9557) and the lowest correlation occurred in the X axis, for the antagonist muscle group (R2 = 0.8862). The Spearman correlation test also confirmed high correlation for all axes in the time domain analysis. In the spectral domain, the analysis showed an increase in the median frequency (MMGMF) in MAS’ greater levels. The highest correlation coefficient between MAS and MMGMF signal occurred in the Z axis for the agonist muscle group (R2 = 0.4883), and the lowest value occurred on the Y axis for the antagonist group (R2 = 0.1657). By means of the Spearman correlation test, the highest correlation occurred between the Y axis of the agonist group (0.6951; p <0.001) and the lowest value on the X axis of the antagonist group (0.3592; p <0.001). We conclude that there was a significantly high correlation between the MMGME and MAS in both muscle groups. Also between MMG and MAS occurred a significant correlation, however moderate for the agonist group, and low for the antagonist group. So, the MMGME proved to be more an appropriate descriptor to correlate with the degree of spasticity defined by the MAS.
Resumo:
Introdução: A avaliação da força muscular é um parâmetro importante para a área de atuação da Fisioterapia como meio de diagnóstico, prognostico, planeamento de tratamentos e avaliação das intervenções terapêuticas. Objetivo: Esta pesquisa teve como objetivo determinar qual a melhor posição da anca para que haja a produção do máximo momento de força muscular e a sua relação com o maior sinal electromiográfico. Participantes: A realização do presente estudo contou com a participação de 30 indivíduos saudáveis, correspondendo a 60 membros inferiores, de ambos os sexos com idades compreendidas entre os 18 e 22 anos sem restrição quanto à prática ou não de atividade física. Metodologia: O protocolo experimental que decorreu no laboratório de fisioterapia da ESTeSC, constou na recolha de informação acerca de parâmetros eletromiográficos de três porções musculares do quadricípite e de picos de momento de força durante as contrações isométricas. A tarefa consistiu na extensão do joelho, numa posição fixa de 5º de flexão, com a anca posicionada em três ângulos clínicos de 25º, 55º e 85º de flexão contra uma resistência externa, oferecida pelo dinamómetro isocinético Biodex System 3. Resultados/Conclusão: Verificou-se que o quadricípite manifestou um maior momento de força na posição de 25º de flexão da anca. Observou-se que apenas a porção muscular do Reto Femoral foi influenciada pela variação da posição articular da anca, manifestando uma maior percentagem de sinal electromiográfico na posição de 25º de flexão da anca e que a relação eletromiográfica/força teve valores mais elevados na posição de 25º de flexão da anca.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, Programa de Pós-Graducação em Informática, 2016.
Resumo:
O progresso tecnológico, atualmente, mostra-se decisivo no processo de desenvolvimento nacional e é evidenciado como um possível mecanismo de redução das disparidades regionais por meio da especialização econômica e da inserção de inovações tecnológicas na produção. Todavia, a distribuição de pessoal qualificado, capital investido e experiências virtuosas de interação com o setor produtivo, criam e consolidam no Brasil a polarização no desenvolvimento de C,T&I. A fim de impulsionar o progresso da ciência e tecnologia no país, principalmente nas regiões periféricas, o governo criou iniciativas de incentivo ao investimento em P&D, movidas pelo estímulo a interação entre empresas e universidades, a fim de produzir inovação e competências científico-tecnológicas. Uma dessas iniciativas é o Fundo Setorial de Energia (CT-Energ), destinado a reunir investimentos em P&D para o setor energético. Fazendo uso dos resultados dos editais do Conselho Nacional de Desenvolvimento Científico-CNPq e da Financiadora de Estudos e Projetos - FINEP, destinados a seleção de projetos a serem financiados com recursos do CT-Energ, este trabalho buscará demonstrar a disparidade na distribuição de interações promovidas pelo fundo, um sinal da força dos fatores de polarização que tornam esta iniciativa ineficiente, mas, dada a imaturidade do Sistema de Inovação Brasileiro, necessária no processo de redução das desigualdades regionais do país.