941 resultados para Algebraic lattices
Resumo:
We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schrodinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-lattice-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the
Resumo:
The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.
Resumo:
We study the existence and stability of multisite discrete breathers in two prototypical non-square Klein-Gordon lattices, namely a honeycomb and a hexagonal one. In the honeycomb case we consider six-site configurations and find that for soft potential and positive coupling the out-of-phase breather configuration and the charge-two vortex breather are linearly stable, while the in-phase and charge-one vortex states are unstable. In the hexagonal lattice, we first consider three-site configurations. In the case of soft potential and positive coupling, the in-phase configuration is unstable and the charge-one vortex is linearly stable. The out-of-phase configuration here is found to always be linearly unstable. We then turn to six-site configurations in the hexagonal lattice. The stability results in this case are the same as in the six-site configurations in the honeycomb lattice. For all configurations in both lattices, the stability results are reversed in the setting of either hard potential or negative coupling. The study is complemented by numerical simulations which are in very good agreement with the theoretical predictions. Since neither the form of the on-site potential nor the sign of the coupling parameter involved have been prescribed, this description can accommodate inverse-dispersive systems (e. g. supporting backward waves) such as transverse dust-lattice oscillations in dusty plasma (Debye) crystals or analogous modes in molecular chains.
Resumo:
Ensembles of charged particles (plasmas) are a highly complex form of matter, most often modeled as a many-body system characterized by weak inter-particle interactions (electrostatic coupling). However, strongly-coupled plasma configurations have recently been produced in laboratory, either by creating ultra-cold plasmas confined in a trap or by manipulating dusty plasmas in discharge experiments. In this paper, the nonlinear aspects involved in the motion of charged dust grains in a one-dimensional plasma monolayer (crystal) are discussed. Different types of collective excitations are reviewed, and characteristics and conditions for their occurrence in dusty plasma crystals are discussed, in a quasi-continuum approximation. Dust crystals are shown to support nonlinear kink-shaped supersonic solitary longitudinal excitations, as well as modulated envelope localized modes associated with longitudinal and transverse vibrations. Furthermore, the possibility for intrinsic localized modes (ILMs) — Discrete Breathers (DBs) — to occur is investigated, from first principles. The effect of mode-coupling is also briefly considered. The relation to previous results on atomic chains, and also to experimental results on strongly-coupled dust layers in gas discharge plasmas, is briefly discussed.
Resumo:
We give a complete description of those separable Banach lattices E with the property that every bounded linear from E into itself is the difference of two positive operators.
Resumo:
We introduce and study the notion of operator hyperreflexivity of subspace lattices. This notion is a natural analogue of the operator reflexivity and is related to hyperreflexivity of subspace lattices introduced by Davidson and Harrison.
Resumo:
By means of optimal control techniques we model and optimize the manipulation of the external quantum state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases of both noninteracting and interacting atoms moving between neighboring sites in a lattice of a double-well optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and with significantly larger fidelity than is possible with processes based on adiabatic transport.
Resumo:
Spinor Bose condensates loaded in optical lattices have a rich phase diagram characterized by different magnetic order. Here we apply the density matrix renormalization group to accurately determine the phase diagram for spin-1 bosons loaded on a one-dimensional lattice. The Mott lobes present an even or odd asymmetry associated to the boson filling. We show that for odd fillings the insulating phase is always in a dimerized state. The results obtained in this work are also relevant for the determination of the ground state phase diagram of the S=1 Heisenberg model with biquadratic interaction.
Resumo:
Suppose X is a projective toric scheme defined over a ring R and equipped with an ample line bundle L . We prove that its K-theory has a direct summand of the form K(R)(k+1) where k = 0 is minimal such that L?(-k-1) is not acyclic. Using a combinatorial description of quasi-coherent sheaves we interpret and prove this result for a ring R which is either commutative, or else left noetherian.
Resumo:
We define and prove the existence of free Banach lattices in the category of Banach lattices and contractive lattice homomorphisms, and establish some of their fundamental properties. We give much more detailed results about their structure in the case when there are only a finite number of generators, and give several Banach lattice characterizations of the number of generators being, respectively, one, finite or countable. We define a Banach lattice P to be projective if, whenever X is a Banach lattice, J is a closed ideal in X, Q : X → X/J is the quotient map, T: P → X/J is a linear lattice homomorphism and ε > 0, there exists a linear lattice homomorphism : P → X such thatT = Q º and ∥∥ ≤ (1 + ε)∥T∥. We establish the connection between projective Banach lattices and free Banach lattices, describe several families of Banach lattices that are projective and prove that some are not.