976 resultados para Air Pollution Environmental aspects
Resumo:
Time series models relating short-term changes in air pollution levels to daily mortality counts typically assume that the effects of air pollution on the log relative rate of mortality do not vary with time. However, these short-term effects might plausibly vary by season. Changes in the sources of air pollution and meteorology can result in changes in characteristics of the air pollution mixture across seasons. The authors develop Bayesian semi-parametric hierarchical models for estimating time-varying effects of pollution on mortality in multi-site time series studies. The methods are applied to the updated National Morbidity and Mortality Air Pollution Study database for the period 1987--2000, which includes data for 100 U.S. cities. At the national level, a 10 micro-gram/m3 increase in PM(10) at lag 1 is associated with a 0.15 (95% posterior interval: -0.08, 0.39),0.14 (-0.14, 0.42), 0.36 (0.11, 0.61), and 0.14 (-0.06, 0.34) percent increase in mortality for winter, spring, summer, and fall, respectively. An analysis by geographical regions finds a strong seasonal pattern in the northeast (with a peak in summer) and little seasonal variation in the southern regions of the country. These results provide useful information for understanding particle toxicity and guiding future analyses of particle constituent data.
Resumo:
Prospective cohort studies have provided evidence on longer-term mortality risks of fine particulate matter (PM2.5), but due to their complexity and costs, only a few have been conducted. By linking monitoring data to the U.S. Medicare system by county of residence, we developed a retrospective cohort study, the Medicare Air Pollution Cohort Study (MCAPS), comprising over 20 million enrollees in the 250 largest counties during 2000-2002. We estimated log-linear regression models having as outcome the age-specific mortality rate for each county and as the main predictor, the average level for the study period 2000. Area-level covariates were used to adjust for socio-economic status and smoking. We reported results under several degrees of adjustment for spatial confounding and with stratification into by eastern, central and western counties. We estimated that a 10 µg/m3 increase in PM25 is associated with a 7.6% increase in mortality (95% CI: 4.4 to 10.8%). We found a stronger association in the eastern counties than nationally, with no evidence of an association in western counties. When adjusted for spatial confounding, the estimated log-relative risks drop by 50%. We demonstrated the feasibility of using Medicare data to establish cohorts for follow-up for effects of air pollution. Particulate matter (PM) air pollution is a global public health problem (1). In developing countries, levels of airborne particles still reach concentrations at which serious health consequences are well-documented; in developed countries, recent epidemiologic evidence shows continued adverse effects, even though particle levels have declined in the last two decades (2-6). Increased mortality associated with higher levels of PM air pollution has been of particular concern, giving an imperative for stronger protective regulations (7). Evidence on PM and health comes from studies of acute and chronic adverse effects (6). The London Fog of 1952 provides dramatic evidence of the unacceptable short-term risk of extremely high levels of PM air pollution (8-10); multi-site time-series studies of daily mortality show that far lower levels of particles are still associated with short-term risk (5)(11-13). Cohort studies provide complementary evidence on the longer-term risks of PM air pollution, indicating the extent to which exposure reduces life expectancy. The design of these studies involves follow-up of cohorts for mortality over periods of years to decades and an assessment of mortality risk in association with estimated long-term exposure to air pollution (2-4;14-17). Because of the complexity and costs of such studies, only a small number have been conducted. The most rigorously executed, including the Harvard Six Cities Study and the American Cancer Society’s (ACS) Cancer Prevention Study II, have provided generally consistent evidence for an association of long- term exposure to particulate matter air pollution with increased all-cause and cardio-respiratory mortality (2,4,14,15). Results from these studies have been used in risk assessments conducted for setting the U.S. National Ambient Air Quality Standard (NAAQS) for PM and for estimating the global burden of disease attributable to air pollution (18,19). Additional prospective cohort studies are necessary, however, to confirm associations between long-term exposure to PM and mortality, to broaden the populations studied, and to refine estimates by regions across which particle composition varies. Toward this end, we have used data from the U.S. Medicare system, which covers nearly all persons 65 years of age and older in the United States. We linked Medicare mortality data to (particulate matter less than 2.5 µm in aerodynamic diameter) air pollution monitoring data to create a new retrospective cohort study, the Medicare Air Pollution Cohort Study (MCAPS), consisting of 20 million persons from 250 counties and representing about 50% of the US population of elderly living in urban settings. In this paper, we report on the relationship between longer-term exposure to PM2.5 and mortality risk over the period 2000 to 2002 in the MCAPS.
Resumo:
Post-natal exposure to air pollution is associated with diminished lung growth during school age. The current authors aimed to determine whether pre-natal exposure to air pollution is associated with lung function changes in the newborn. In a prospective birth cohort of 241 healthy term-born neonates, tidal breathing, lung volume, ventilation inhomogeneity and exhaled nitric oxide (eNO) were measured during unsedated sleep at age 5 weeks. Maternal exposure to particles with a 50% cut-off aerodynamic diameter of 10 microm (PM(10)), nitrogen dioxide (NO(2)) and ozone (O(3)), and distance to major roads were estimated during pregnancy. The association between these exposures and lung function was assessed using linear regression. Minute ventilation was higher in infants with higher pre-natal PM(10) exposure (24.9 mL x min(-1) per microg x m(-3) PM(10)). The eNO was increased in infants with higher pre-natal NO(2) exposure (0.98 ppb per microg x m(-3) NO(2)). Post-natal exposure to air pollution did not modify these findings. No association was found for pre-natal exposure to O(3) and lung function parameters. The present results suggest that pre-natal exposure to air pollution might be associated with higher respiratory need and airway inflammation in newborns. Such alterations during early lung development may be important regarding long-term respiratory morbidity.
Resumo:
Climate change alone influences future levels of tropospheric ozone and their precursors through modifications of gas-phase chemistry, transport, removal, and natural emissions. The goal of this study is to determine at what extent the modes of variability of gas-phase pollutants respond to different climate change scenarios over Europe. The methodology includes the use of the regional modeling system MM5 (regional climate model version)-CHIMERE for a target domain covering Europe. Two full-transient simulations covering from 1991–2050 under the SRES A2 and B2 scenarios driven by ECHO-G global circulation model have been compared. The results indicate that the spatial patterns of variability for tropospheric ozone are similar for both scenarios, but the magnitude of the change signal significantly differs for A2 and B2. The 1991–2050 simulations share common characteristics for their chemical behavior. As observed from the NO2 and α-pinene modes of variability, our simulations suggest that the enhanced ozone chemical activity is driven by a number of parameters, such as the warming-induced increase in biogenic emissions and, to a lesser extent, by the variation in nitrogen dioxide levels. For gas-phase pollutants, the general increasing trend for ozone found under A2 and B2 forcing is due to a multiplicity of climate factors, such as increased temperature, decreased wet removal associated with an overall decrease of precipitation in southern Europe, increased photolysis of primary and secondary pollutants as a consequence of lower cloudiness and increased biogenic emissions fueled by higher temperatures.
Resumo:
Exposure to outdoor air pollutants and passive tobacco smoke are common but avoidable worldwide risk factors for morbidity and mortality of individuals. In addition to well-known effects of pollutants on the cardiovascular system and the development of cancer, in recent years the association between air pollution and respiratory morbidity has become increasingly apparent. Not only in adults, but also in children with asthma and in healthy children a clear harmful effect of exposure towards air pollutants has been demonstrated in many studies. Among others increased pollution has been shown to result in more frequent and more severe respiratory symptoms, more frequent exacerbations, higher need for asthma medication, poorer lung function and increased visits to the emergency department and more frequent hospitalisations. While these associations are well established, the available data on the role of air pollution in the development of asthma seems less clear. Some studies have shown that increased exposure towards tobacco smoke and air pollution leads to an increase in asthma incidence and prevalence; others were not able to confirm those findings. Possible reasons for this discrepancy are different definitions of the outcome asthma, different methods for exposure estimation and differences in the populations studied with differing underlying genetic backgrounds. Regardless of this inconsistency, several mechanisms have already been identified linking air pollution with asthma development. Among these are impaired lung growth and development, immunological changes, genetic or epigenetic effects or increased predisposition for allergic sensitisation. What the exact interactions are and which asthmatic phenotypes will be influenced most by pollutants will be shown by future studies. This knowledge will then be helpful in exploring possible preventive measures for the individual and to help policy makers in deciding upon most appropriate regulations on a population level.
Resumo:
The Spanish NGO "Alianza por la Solidaridad" has installed improved cookstoves in 3000 households during 2012 and 2013 to improve energy efficiency reducing fuelwood consumption and to improve in-door air quality. The type of cookstoves were Noflaye Jeeg and Noflaye Jaboot and were installed in the Cassamance Natural Subregion covering part of Senegal, The Gambia and Guinea-Bissau. The Technical University of Madrid (UPM) has conducted a field study on a sample of these households to assess the effect of improved cookstoves on kitchen air quality. Measurements of carbon monoxide (CO) and fine particle matter (PM2.5) were taken for 24-hr period before and after the installation of improved cook-stoves. The 24-hr mean CO concentrations were lower than the World Health Organization (WHO) guidelines for Guinea-Bissau but higher for Senegal and Gambia, even after the installation of improved cookstoves. As for PM2.5 concentrations, 24-hr mean were always higher than these guidelines. However, improved cookstoves produced significant reductions on 24-hr mean CO and PM2.5 concentrations in Senegal and for mean and maximum PM2.5 concentration on Gambia. Although this variability needs to be explained by further research to determine which other factors could affect indoor air pollution, the study provided a better understanding of the problem and envisaged alternatives to be implemented in fu-ture phases of the NGO project.
Resumo:
The Spanish NGO "Alianza por la Solidaridad" has installed improved cookstoves in 3000 households during 2012 and 2013 to improve energy efficiency reducing fuelwood consumption and to improve indoor air quality. The type of cookstoves were Noflaye Jeeg and Noflaye Jaboot and were installed in the Cassamance Natural Subregion covering part of Senegal, The Gambia and Guinea-Bissau. The Technical University of Madrid (UPM) has conducted a field study on a sample of these households to assess the effect of improved cookstoves on kitchen air quality. Measurements of carbon monoxide (CO) and fine particle matter (PM2.5) were taken for 24-hr period before and after the installation of improved cookstoves. The 24-hr mean CO concentrations were lower than the World Health Organization (WHO) guidelines for Guinea-Bissau but higher for Senegal and Gambia, even after the installation of improved cookstoves. As for PM2.5 concentrations, 24-hr mean were always higher than these guidelines. However, improved cookstoves produced significant reductions on 24-hr mean CO and PM2.5 concentrations in Senegal and for mean and maximum PM2.5 concentration on Gambia. Although this variability needs to be explained by further research to determine which other factors could affect indoor air pollution, the study provided a better understanding of the problem and envisaged alternatives to be implemented in future phases of the NGO project.
Resumo:
The last decade, scientific studies have indicated an association between air pollution to which people are exposed and wide range of adverse health outcomes. We have developed a tool which is based on a model (MM5-CMAQ) running over Europe with 50 km spatial resolution, based on EMEP annual emissions, to produce a short-term forecast of the impact on health. In order to estimate the mortality change (forecasted for the next 24 hours) we have chosen a log-linear (Poisson) regression form to estimate the concentration-response function. The parameters involved in the C-R function have been estimated based on epidemiological studies, which have been published. Finally, we have derived the relationship between concentration change and mortality change from the C-R function which is the final health impact function.
Resumo:
In the last decade, a number of quantitative epidemiological studies of specific diseases have been done in developing countries that for the first time allow estimation of the total burden of disease (mortality and morbidity) attributable to use of solid fuels in adult women and young children, who jointly receive the highest exposures because of their household roles. Few such studies are available as yet for adult men or children over 5 years. This paper evaluates the existing epidemiological studies and applies the resulting risks to the more than three-quarters of all Indian households dependent on such fuels. Allowance is made for the existence of improved stoves with chimneys and other factors that may lower exposures. Attributable risks are calculated in reference to the demographic conditions and patterns of each disease in India. Sufficient evidence is available to estimate risks most confidently for acute respiratory infections (ARI), chronic obstructive pulmonary disease (COPD), and lung cancer. Estimates for tuberculosis (TB), asthma, and blindness are of intermediate confidence. Estimates for heart disease have the lowest confidence. Insufficient quantitative evidence is currently available to estimate the impact of adverse pregnancy outcomes (e.g., low birthweight and stillbirth). The resulting conservative estimates indicate that some 400–550 thousand premature deaths can be attributed annually to use of biomass fuels in these population groups. Using a disability-adjusted lost life-year approach, the total is 4–6% of the Indian national burden of disease, placing indoor air pollution as a major risk factor in the country.