865 resultados para Agricultural Learning of Barbacena, MG
Resumo:
This study was an attempt to identify the epistemological roots of knowledge when students carry out hands-on experiments in physics. We found that, within the context of designing a solution to a stated problem, subjects constructed and ran thought experiments intertwined within the processes of conducting physical experiments. We show that the process of alternating between these two modes- empirically experimenting and experimenting in thought- leads towards a convergence on scientifically acceptable concepts. We call this process mutual projection. In the process of mutual projection, external representations were generated. Objects in the physical environment were represented in an imaginary world and these representations were associated with processes in the physical world. It is through this coupling that constituents of both the imaginary world and the physical world gain meaning. We further show that the external representations are rooted in sensory interaction and constitute a semi-symbolic pictorial communication system, a sort of primitive 'language', which is developed as the practical work continues. The constituents of this pictorial communication system are used in the thought experiments taking place in association with the empirical experimentation. The results of this study provide a model of physics learning during hands-on experimentation.
Resumo:
The close relationship between children’s vocabulary size and their later academic success has led researchers to explore how vocabulary development might be promoted during the early school years. We describe a study that explored the effectiveness of naturalistic classroom storytelling as an instrument for teaching new vocabulary to six- to nine-year-old children. We examined whether learning was facilitated by encountering new words in single versus multiple story contexts, or by the provision of age-appropriate definitions of words as they were encountered. Results showed that encountering words in stories on three occasions led to significant gains in word knowledge in children of all ages and abilities, and that learning was further enhanced across the board when teachers elaborated on the new words’ meanings by providing dictionary definitions. Our findings clarify how classroom storytelling activities can be a highly effective means of promoting vocabulary development.
Resumo:
The Self-Organizing Map (SOM) is a popular unsupervised neural network able to provide effective clustering and data visualization for multidimensional input datasets. In this paper, we present an application of the simulated annealing procedure to the SOM learning algorithm with the aim to obtain a fast learning and better performances in terms of quantization error. The proposed learning algorithm is called Fast Learning Self-Organized Map, and it does not affect the easiness of the basic learning algorithm of the standard SOM. The proposed learning algorithm also improves the quality of resulting maps by providing better clustering quality and topology preservation of input multi-dimensional data. Several experiments are used to compare the proposed approach with the original algorithm and some of its modification and speed-up techniques.
Resumo:
James Cooksey Culwick (1845-1907) was born in England. Trained as chorister and organist in Lichfield Cathedral, he moved to Ireland at twenty- one and remained until his death in 1907. Although his reputation as scholar, musician and teacher was acknowledged widely during his lifetime - he received an honorary doctorate from University of Dublin (1893) - little is known about the contribution he made to music education. This paper addresses this gap in the literature and argues that it was Culwick's singular achievement to pay attention to music pedagogy at secondary level, by recognizing that music could be seen as a serious career option for girls, and by providing resources for teachers which emphasised the development of an 'art-feeling' in pupils of all abilities. In addition, he considered Irish music as an art which had significance as music first, and Irish music second, and advocated a 'laudable tolerance' for opposing views on matters of cultural identity to Ireland at the end of the nineteenth century.
Resumo:
Neutral cues that predict emotional events (emotional harbingers) acquire emotional properties and attract attention. Given the importance of emotional harbingers for future survival, it is desirable to flexibly learn new facts about emotional harbingers when needed. However, recent research revealed that it is harder to learn new associations for emotional harbingers than cues that predict non-emotional events (neutral harbingers). In the current study, we addressed whether this impaired association learning for emotional harbingers is altered by one’s awareness of the contingencies between cues and emotional outcomes. Across 3 studies, we found that one’s awareness of the contingencies determines subsequent association learning of emotional harbingers. Emotional harbingers produced worse association learning than neutral harbingers when people were not aware of the contingencies between cues and emotional outcomes, but produced better association learning when people were aware of the contingencies. These results suggest that emotional harbingers do not always suffer from impaired association learning and can show facilitated learning depending on one’s contingency awareness.
Resumo:
Sociable robots are embodied agents that are part of a heterogeneous society of robots and humans. They Should be able to recognize human beings and each other, and to engage in social, interactions. The use of a robotic architecture may strongly reduce the time and effort required to construct a sociable robot. Such architecture must have structures and mechanisms to allow social interaction. behavior control and learning from environment. Learning processes described oil Science of Behavior Analysis may lead to the development of promising methods and Structures for constructing robots able to behave socially and learn through interactions from the environment by a process of contingency learning. In this paper, we present a robotic architecture inspired from Behavior Analysis. Methods and structures of the proposed architecture, including a hybrid knowledge representation. are presented and discussed. The architecture has been evaluated in the context of a nontrivial real problem: the learning of the shared attention, employing an interactive robotic head. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human and the environment. The obtained results show that the robotic architecture is able to produce appropriate behavior and to learn from social interaction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.