984 resultados para Advanced Oxidation Processes
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The mechanism of electrochemical oxidation of surface reformed CuA1Ag alloys having different composition of heat treatment, in 0.5 M NaOH was studied by means of cyclic polarization, constant potential electrolysis, ICP, AA, SEM and EDX. The surface reformation consisted of a repetitive triangular potential sweep (RTPS) between H 2 and O 2 evolution at 100 mV s -1 in the working solution itself, performed in order to increase the electrode roughness and obtain a quasi-stationary I/E profile in which the potentiodynamic behaviour of copper and silver was clearly revealed. The alloys suffer aluminum dealloying after such an RTPS. The quasi-stationary cyclic polarization curve exhibits a multiplicity of current peaks which have been related to the electrochemical reactions involving the pure alloying elements. Complex potential perturbation programmes in regions having different anodic and cathodic limits allowed the study of the mechanism of the electrochemical oxidation of the surface reformed alloys and the compare with that corresponding to the pure metals. The basic differences between the electro-oxidation processes of the surface reformed CuA1Ag alloys with respect to those established for the high purity alloying metals are the splitting of the peaks corresponding to the formation of the Cu(I) and Ag(I) species. © 1991.
Resumo:
Pós-graduação em Engenharia Civil e Ambiental - FEB
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Hydrogen peroxide is a powerful oxidant that finds application in several areas, but most particularly in the treatment of industrial wastewaters. The aim of the present study was to investigate the effects of applied potential and electrolyte flow conditions on the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor with a gas diffusion electrode (GDE). The electrolyses were performed in an aqueous acidic medium using a GDE constructed with conductive black graphite and polytetrafluoroethylene (80:20 w/w). Under laminar flow conditions (flow rate = 50 L/h), hydrogen peroxide was formed in a maximum yield of 414 mg/L after 2 h at -2.25 V vs Pt //Ag/AgCl (global rate constant = 3.1 mg/(L min); energy consumption = 22.1 kWh/kg). Under turbulent flow (300 L/h), the maximum yield obtained was 294 mg/L after 2 h at -1.75 V vs Pt//Ag/AgCl (global rate constant = 2.5 mg/ (L min); energy consumption = 30.1 kWh/kg).
Resumo:
DEVELOPMENT AND EVALUATION OF GAS DIFFUSION ELECTRODES (GDE) FOR GENERATION OF H2O2 IN SITU AND THEIR APPLICATION IN THE DEGRADATION OF REACTIVE BLUE 19 DYE. This work reports the development of GDE for electrogeneration of H2O2 and their application in the degradation process of Reactive Blue 19 dye. GDE produced by carbon black with 20% polytetrafluoroethylene generated up to 500 mg L-1 of H2O2 through the electrolysis of acidic medium at -0.8 V vs Ag/AgCl. Reactive Blue 19 dye was degraded most efficiently with H2O2 electrogenerated in the presence of Fe(II) ions, leading to removal of 95% of the original color and 39% of TOC at -0.8 V vs Ag/AgCl.
Resumo:
Our aim was to investigate and determine the associations between oxidative stress (OS), dyslipidemia and inflammation in patients treated with continuous ambulatory peritoneal dialysis (CAPD) and hemodialysis (HD) using observational cross-sectional study. Twenty patients in CAPD and 48 in HD for at least 8 weeks and aged =18 years were included in the study. Individuals with malignant or acute inflammatory disease were excluded. A control group of 17 healthy individuals was also recruited. The biochemical parameter evaluations were analyzed using colorimetric kits for albumin, serum glucose, total cholesterol (TC) and lipid fractions. To determine the inflammatory status, CRP, IL-6 and TNF-a were analyzed by automated chemiluminescence kits. Plasma advanced oxidation protein products (AOPP) were determined by spectrophotometry. Mean AOPP levels were significantly higher for the HD group compared to the control, and there was no difference in AOPP concentrations between the control and CAPD groups. Dialysis patients had levels of inflammatory parameters higher than controls, and showed a high prevalence of patients with dyslipidemia, especially in CAPD. In the HD group, AOPP was positively correlated with triglycerides (TG) and inversely associated with HDL. Also the HD group was observed to have negative associations between TNF-a and HDL, LDL and TC. In the CAPD group, CRP was inversely correlated with HDL. Hemodialysis patients had increased protein OS and associations of inflammation and dyslipidemia were also observed in these dialysis groups. A more detailed characterization of the relations between oxidative stress and other more traditional risk factors has therapeutic importance, since cardiovascular diseases are the leading cause of death among dialysis patients.
Resumo:
The continued growth of large cities is producing increasing volumes of urban sewage sludge. Disposing of this waste without damaging the environment requires careful management. The application of large quantities of biosolids (treated sewage sludge) to agricultural lands for many years may result in the excessive accumulation of nutrients like phosphorus (P) and thereby raise risks of eutrophication in nearby water bodies. We evaluated the fractionation of P in samples of an Oxisol collected as part of a field experiment in which biosolids were added at three rates to a maize (Zea mays L) plantation over four consecutive years. The biosolids treatments were equivalent to one, two and four times the recommended N rate for maize crops. In a fourth treatment, mineral fertilizer was applied at the rate recommended for maize. Inorganic P forms were extracted with ammonium chloride to remove soluble and loosely bound P; P bound to aluminum oxide (P-Al) was extracted with ammonium fluoride; P bound to iron oxide (P-Fe) was extracted with sodium hydroxide; and P bound to calcium (P-Ca) was extracted with sulfuric acid. Organic P was calculated as the difference between total P and inorganic P. The predominant fraction of P was P-Fe, followed by P-Al and P-Ca. P fractions were positively correlated to the amounts of P applied, except for P-Ca. The low values of P-Ca were due to the advanced weathering processes to which the Oxisol have been subjected, under which forms of P-Ca are converted to P-Fe and P-Al. The fertilization with P via biosolids increased P availability for maize plants even when a large portion of P was converted to more stable forms. Phosphorus content in maize leaves and grains was positively correlated with P fractions in soils. From these results it can be concluded that the application of biosolids in highly weathered tropical clayey soils for many years, even above the recommended rate based on N requirements for maize, tend to be less potentially hazardous to the environment than in less weathered sandy soils because the non-readily P fractions are predominant after the addition of biosolids. (C) 2012 Elsevier B.V. All rights reserved.