968 resultados para Administrative Data Processing
Resumo:
A conceptual information system consists of a database together with conceptual hierarchies. The management system TOSCANA visualizes arbitrary combinations of conceptual hierarchies by nested line diagrams and allows an on-line interaction with a database to analyze data conceptually. The paper describes the conception of conceptual information systems and discusses the use of their visualization techniques for on-line analytical processing (OLAP).
Resumo:
While most data analysis and decision support tools use numerical aspects of the data, Conceptual Information Systems focus on their conceptual structure. This paper discusses how both approaches can be combined.
Resumo:
We present a new algorithm called TITANIC for computing concept lattices. It is based on data mining techniques for computing frequent itemsets. The algorithm is experimentally evaluated and compared with B. Ganter's Next-Closure algorithm.
Resumo:
In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.
Resumo:
Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.
Resumo:
Among many other knowledge representations formalisms, Ontologies and Formal Concept Analysis (FCA) aim at modeling ‘concepts’. We discuss how these two formalisms may complement another from an application point of view. In particular, we will see how FCA can be used to support Ontology Engineering, and how ontologies can be exploited in FCA applications. The interplay of FCA and ontologies is studied along the life cycle of an ontology: (i) FCA can support the building of the ontology as a learning technique. (ii) The established ontology can be analyzed and navigated by using techniques of FCA. (iii) Last but not least, the ontology may be used to improve an FCA application.
Resumo:
About ten years ago, triadic contexts were presented by Lehmann and Wille as an extension of Formal Concept Analysis. However, they have rarely been used up to now, which may be due to the rather complex structure of the resulting diagrams. In this paper, we go one step back and discuss how traditional line diagrams of standard (dyadic) concept lattices can be used for exploring and navigating triadic data. Our approach is inspired by the slice & dice paradigm of On-Line-Analytical Processing (OLAP). We recall the basic ideas of OLAP, and show how they may be transferred to triadic contexts. For modeling the navigation patterns a user might follow, we use the formalisms of finite state machines. In order to present the benefits of our model, we show how it can be used for navigating the IT Baseline Protection Manual of the German Federal Office for Information Security.
Resumo:
Die Bedeutung des Dienstgüte-Managements (SLM) im Bereich von Unternehmensanwendungen steigt mit der zunehmenden Kritikalität von IT-gestützten Prozessen für den Erfolg einzelner Unternehmen. Traditionell werden zur Implementierung eines wirksamen SLMs Monitoringprozesse in hierarchischen Managementumgebungen etabliert, die einen Administrator bei der notwendigen Rekonfiguration von Systemen unterstützen. Auf aktuelle, hochdynamische Softwarearchitekturen sind diese hierarchischen Ansätze jedoch nur sehr eingeschränkt anwendbar. Ein Beispiel dafür sind dienstorientierte Architekturen (SOA), bei denen die Geschäftsfunktionalität durch das Zusammenspiel einzelner, voneinander unabhängiger Dienste auf Basis deskriptiver Workflow-Beschreibungen modelliert wird. Dadurch ergibt sich eine hohe Laufzeitdynamik der gesamten Architektur. Für das SLM ist insbesondere die dezentrale Struktur einer SOA mit unterschiedlichen administrativen Zuständigkeiten für einzelne Teilsysteme problematisch, da regelnde Eingriffe zum einen durch die Kapselung der Implementierung einzelner Dienste und zum anderen durch das Fehlen einer zentralen Kontrollinstanz nur sehr eingeschränkt möglich sind. Die vorliegende Arbeit definiert die Architektur eines SLM-Systems für SOA-Umgebungen, in dem autonome Management-Komponenten kooperieren, um übergeordnete Dienstgüteziele zu erfüllen: Mithilfe von Selbst-Management-Technologien wird zunächst eine Automatisierung des Dienstgüte-Managements auf Ebene einzelner Dienste erreicht. Die autonomen Management-Komponenten dieser Dienste können dann mithilfe von Selbstorganisationsmechanismen übergreifende Ziele zur Optimierung von Dienstgüteverhalten und Ressourcennutzung verfolgen. Für das SLM auf Ebene von SOA Workflows müssen temporär dienstübergreifende Kooperationen zur Erfüllung von Dienstgüteanforderungen etabliert werden, die sich damit auch über mehrere administrative Domänen erstrecken können. Eine solche zeitlich begrenzte Kooperation autonomer Teilsysteme kann sinnvoll nur dezentral erfolgen, da die jeweiligen Kooperationspartner im Vorfeld nicht bekannt sind und – je nach Lebensdauer einzelner Workflows – zur Laufzeit beteiligte Komponenten ausgetauscht werden können. In der Arbeit wird ein Verfahren zur Koordination autonomer Management-Komponenten mit dem Ziel der Optimierung von Antwortzeiten auf Workflow-Ebene entwickelt: Management-Komponenten können durch Übertragung von Antwortzeitanteilen untereinander ihre individuellen Ziele straffen oder lockern, ohne dass das Gesamtantwortzeitziel dadurch verändert wird. Die Übertragung von Antwortzeitanteilen wird mithilfe eines Auktionsverfahrens realisiert. Technische Grundlage der Kooperation bildet ein Gruppenkommunikationsmechanismus. Weiterhin werden in Bezug auf die Nutzung geteilter, virtualisierter Ressourcen konkurrierende Dienste entsprechend geschäftlicher Ziele priorisiert. Im Rahmen der praktischen Umsetzung wird die Realisierung zentraler Architekturelemente und der entwickelten Verfahren zur Selbstorganisation beispielhaft für das SLM konkreter Komponenten vorgestellt. Zur Untersuchung der Management-Kooperation in größeren Szenarien wird ein hybrider Simulationsansatz verwendet. Im Rahmen der Evaluation werden Untersuchungen zur Skalierbarkeit des Ansatzes durchgeführt. Schwerpunkt ist hierbei die Betrachtung eines Systems aus kooperierenden Management-Komponenten, insbesondere im Hinblick auf den Kommunikationsaufwand. Die Evaluation zeigt, dass ein dienstübergreifendes, autonomes Performance-Management in SOA-Umgebungen möglich ist. Die Ergebnisse legen nahe, dass der entwickelte Ansatz auch in großen Umgebungen erfolgreich angewendet werden kann.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
Objetivo Identificar la prevalencia de síntomas osteomusculares, por segmentos y los factores de riesgo asociados, en los trabajadores de una empresa de Geomática, en Colombia en el año 2014. Metodología Se llevó a cabo un estudio descriptivo de corte transversal con una población de 169 trabajadores, distribuidos en 2 grupos, el grupo de campo que desarrolla actividades de topografía y el grupo de oficina donde se realizan procesamiento de datos en Geomática y actividades administrativas. A cada trabajador se le aplicó el cuestionario ERGOPAR que interroga la exposición o factores de riesgo y la presencia de síntomas osteomusculares. Resultados: El personal de oficina presenta mayor frecuencia de síntomas osteomusculares en el cuello 72%, la región lumbar 55%, los codos 17,7%, las manos y muñecas 57.3%. Presentándose con mayor frecuencia en las mujeres los síntomas en cuello 80% y manos 64%, mientras que los mayores porcentajes en personal de campo se presentan en las piernas 21%, las rodillas 26% y pies 11,5%. Se encontró asociación significativa entre la sedestación durante más de cuatro horas, con dolor en cuello (p=0.02) y dolor en región lumbar (p=0.03); inclinar el cuello hacia delante durante más de cuatro horas, con dolor en el cuello (p=0.006); repetir cada pocos segundos la flexión de muñecas (p=001) y utilizar los dedos de manera intensiva por más de 4 horas (p=0.01) con dolor en manos y las variables jornada laboral y puesto de trabajo con dolor en pies. Conclusiones La prevalencia de síntomas osteomusculares en los trabajadores de la empresa estudiada es alta. Dado que se encontró asociación significativa con las variables sociodemográficas y laborales. La alta prevalencia de sintomatología puede ser explicada por la exposición a carga física laboral, por posturas de trabajo, por movimientos repetitivos y características propias de género.
Resumo:
Objetivo: Establecer la correlación entre condiciones de iluminación, ángulo visual, discriminación de contrastes y agudeza visual en la aparición de síntomas visuales en operarios de computador. Materiales y métodos: Estudio de corte transversal y correlación en muestra de 136 trabajadores administrativos de un “call center” perteneciente a una entidad de salud en la ciudad de Bogotá, utilizando un cuestionario con el que se evaluaron las variables sociodemográficas y ocupacionales; aplicando la escala de síntomas visión – computador (CVSS17), realizando evaluación médica y midiendo iluminación y distancia operario pantalla de computador y con los datos recolectados se realizó un análisis estadístico bivariado y se estableció la correlación entre las condiciones de iluminación, ángulo visual, discriminación de contrataste y agudeza visual; frente a la aparición de síntomas visuales asociados con el uso del computador. El análisis se llevó a cabo con medidas de tendencia central y dispersión y con el coeficiente de correlación paramétrico de Pearson o no-paramétrico de Spearman, previamente se evaluó la normalidad con la prueba de Shapiro-Wilk. Las pruebas estadísticas se evaluarán a un nivel de significancia del 5% (p<0.05). Resultados: El promedio de edad de los participantes en el estudio fue de 36,3 años con un rango entre los 22 y 57 años y en donde el género predominante fue el femenino con el 79,4%. Se encontraron síntomas visuales asociados al uso de pantalla de computador del 59,6%, siendo los más frecuentes la epifora (70,6%), fotofobia (67,6%) y ardor ocular (54,4%). Se reportó una correlación inversa significativa entre niveles de iluminación y manifestación de fotofobia (p=0.02; r= 0,262). Por otra parte no se encontró correlación significativa entre los síntomas referidos con ángulo de visión y agudeza visual y discriminación de contrastes. Conclusión: Las condiciones laborales de iluminación del grupo de estudio están relacionadas con la manifestación de fotofobia, Se encontró asociación entre síntomas visuales y variables sociodemográficas, específicamente con el género, fotofobia a pantalla, fatiga visual y fotofobia
Resumo:
The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.
Resumo:
GODIVA2 is a dynamic website that provides visual access to several terabytes of physically distributed, four-dimensional environmental data. It allows users to explore large datasets interactively without the need to install new software or download and understand complex data. Through the use of open international standards, GODIVA2 maintains a high level of interoperability with third-party systems, allowing diverse datasets to be mutually compared. Scientists can use the system to search for features in large datasets and to diagnose the output from numerical simulations and data processing algorithms. Data providers around Europe have adopted GODIVA2 as an INSPIRE-compliant dynamic quick-view system for providing visual access to their data.