927 resultados para Acoustic Propagation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les élevages d'animaux de rente hébergent de plus en plus de bêtes. Cette situation génère une accumulation de poussière organique, constituée de particules inertes et de microorganismes, issus de la nourriture, de la litière, des matières fécales, des pellicules de la peau, des poils, etc. L'activité des animaux et l'activité professionnelle favorisent une remise en suspension de cette poussière, qui peut se propager à l'extérieur. Ces émissions de particules organiques dans l'environnement soulèvent des inquiétudes pour la santé des riverains. Ces craintes sont légitimes, puisque les problèmes respiratoires, allergiques ou toxiques sont bien connus chez les travailleurs agricoles exposés à de fortes doses de poussières organiques. Un autre risque sanitaire lié aux élevages intensifs d'animaux est la dissémination de bactéries résistantes aux antibiotiques dans l'environnement avec, pour éventuelle conséquence, une transmission de ces souches aux personnes résidant à proximité. Cette problématique est bien connue dans les élevages de porcs fréquemment colonisés par des SARM (Staphylococcus aureus résistant à la méticilline), qui sont transmis aux éleveurs. Les deux études analysées ci-dessous ont investigué cette problématique de dissémination des particules organiques dans l'environnement et les conséquences sur la santé des riverains. La première a étudié le lien entre le fait de résider à proximité de fermes d'élevage d'animaux et la prévalence de maladies respiratoires. La deuxième a étudié le risque de colonisation nasale par des SARM dans une population de vétérans vivant à proximité d'élevages intensifs de porcs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Isästeriilin kevätrypsin geeniaineksen ylläpito in vitro mikroviljelyllä

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth rate of acoustic tumors, although slow, varies widely. There may be a continuous spectrum or distinct groups of tumor growth rates. Clinical, audiologic, and conventional histologic tests have failed to shed any light on this problem. Modern immunohistochemical methods may stand a better chance. The Ki-67 monoclonal antibody stains proliferating cells and is used in this study to investigate the growth fraction of 13 skull base schwannomas. The acoustic tumors can be divided into two different growth groups, one with a rate five times the other. The literature is reviewed to see if this differentiation is borne out by the radiologic studies. Distinct growth rates have been reported: one very slow, taking 50 years to reach 1 cm in diameter, a second rate with a diameter increase of 0.2 cm/year, and a third rate five times the second, with a 1.0 cm increase in diameter per year. A fourth group growing at 2.5 cm/year is postulated, but these tumors cannot be followed for long radiologically, since symptoms demand surgical intervention. The clinical implications of these separate growth rates are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research has provided inconsistent results regarding the spatial modulation of auditory-somatosensory interactions. The present study reports three experiments designed to investigate the nature of these interactions in the space close to the head. Human participants made speeded detection responses to unimodal auditory, somatosensory, or simultaneous auditory-somatosensory stimuli. In Experiment 1, electrocutaneous stimuli were presented to either earlobe, while auditory stimuli were presented from the same versus opposite sides, and from one of two distances (20 vs. 70cm) from the participant's head. The results demonstrated a spatial modulation of auditory-somatosensory interactions when auditory stimuli were presented from close to the head. In Experiment 2, electrocutaneous stimuli were delivered to the hands, which were placed either close to or far from the head, while the auditory stimuli were again presented at one of two distances. The results revealed that the spatial modulation observed in Experiment 1 was specific to the particular body part stimulated (head) rather than to the region of space (i.e. around the head) where the stimuli were presented. The results of Experiment 3 demonstrate that sounds that contain high-frequency components are particularly effective in eliciting this auditory-somatosensory spatial effect. Taken together, these findings help to resolve inconsistencies in the previous literature and suggest that auditory-somatosensory multisensory integration is modulated by the stimulated body surface and acoustic spectra of the stimuli presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter our objective is to provide an overview of the effects of anomalous propagation conditions on weather radar observations, based mostly on studies performed by the authors during the last decade, summarizing results from recent publications, presentations, or unpublished material. We believe this chapter may be useful as an introductory text for graduate students, or researchers and practitioners dealing with this topic. Throughout the text a spherical symmetric atmosphere is assumed and the focus is on the occurrence of ground and sea clutter and subsequent problems for weather radar applications. Other related topics such as long-path, over-the-horizon propagation and detection of radar targets (either clutter or weather systems) at long ranges is not considered here; however readers should be aware of the potential problems these phenomena may have as range aliasing may cause these echoes appear nearer than they are ¿ for more details see the discussion about second trip echoes by Zrnic, this volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic waveform inversions are an increasingly popular tool for extracting subsurface information from seismic data. They are computationally much more efficient than elastic inversions. Naturally, an inherent disadvantage is that any elastic effects present in the recorded data are ignored in acoustic inversions. We investigate the extent to which elastic effects influence seismic crosshole data. Our numerical modeling studies reveal that in the presence of high contrast interfaces, at which P-to-S conversions occur, elastic effects can dominate the seismic sections, even for experiments involving pressure sources and pressure receivers. Comparisons of waveform inversion results using a purely acoustic algorithm on synthetic data that is either acoustic or elastic, show that subsurface models comprising small low-to-medium contrast (?30%) structures can be successfully resolved in the acoustic approximation. However, in the presence of extended high-contrast anomalous bodies, P-to-S-conversions may substantially degrade the quality of the tomographic images. In particular, extended low-velocity zones are difficult to image. Likewise, relatively small low-velocity features are unresolved, even when advanced a priori information is included. One option for mitigating elastic effects is data windowing, which suppresses later arriving seismic arrivals, such as shear waves. Our tests of this approach found it to be inappropriate because elastic effects are also included in earlier arriving wavetrains. Furthermore, data windowing removes later arriving P-wave phases that may provide critical constraints on the tomograms. Finally, we investigated the extent to which acoustic inversions of elastic data are useful for time-lapse analyses of high contrast engineered structures, for which accurate reconstruction of the subsurface structure is not as critical as imaging differential changes between sequential experiments. Based on a realistic scenario for monitoring a radioactive waste repository, we demonstrated that acoustic inversions of elastic data yield substantial distortions of the tomograms and also unreliable information on trends in the velocity changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence to suggest that the presence of mesoscopic heterogeneities constitutes an important seismic attenuation mechanism in porous rocks. As a consequence, centimetre-scale perturbations of the rock physical properties should be taken into account for seismic modelling whenever detailed and accurate responses of specific target structures are desired, which is, however, computationally prohibitive. A convenient way to circumvent this problem is to use an upscaling procedure to replace each of the heterogeneous porous media composing the geological model by corresponding equivalent visco-elastic solids and to solve the visco-elastic equations of motion for the inferred equivalent model. While the overall qualitative validity of this procedure is well established, there are as of yet no quantitative analyses regarding the equivalence of the seismograms resulting from the original poro-elastic and the corresponding upscaled visco-elastic models. To address this issue, we compare poro-elastic and visco-elastic solutions for a range of marine-type models of increasing complexity. We found that despite the identical dispersion and attenuation behaviour of the heterogeneous poro-elastic and the equivalent visco-elastic media, the seismograms may differ substantially due to diverging boundary conditions, where there exist additional options for the poro-elastic case. In particular, we observe that at the fluid/porous-solid interface, the poro- and visco-elastic seismograms agree for closed-pore boundary conditions, but differ significantly for open-pore boundary conditions. This is an important result which has potentially far-reaching implications for wave-equation-based algorithms in exploration geophysics involving fluid/porous-solid interfaces, such as, for example, wavefield decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overarching goal of the proposed research was to provide a predictive tool for knickpoint propagation within the HCA (Hungry Canyon Alliance) territory. Knickpoints threaten the stability of bridge structures in Western Iowa. The study involved detailed field investigations over two years in order to monitor the upstream migration of a knickpoint on Mud Creek in Mills County, IA and identify the key mechanisms triggering knickpoint propagation. A state-of-the-art laser level system mounted on a movable truss provided continuous measurements of the knickpoint front for different flow conditions. A pressure transducer found in proximity of the truss provided simultaneous measurements of the flow depth. The laser and pressure transducer measurements led to the identification of the conditions at which the knickpoint migration commences. It was suggested that negative pressures developed by the reverse roller flow near the toe of the knickpoint face triggered undercutting of the knickpoint at this location. The pressure differential between the negative pressure and the atmospheric pressure also draws the impinging jet closer to the knickpoint face producing scour. In addition, the pressure differential may induce suction of sediment from the face. Other contributing factors include slump failure, seepage effects, and local fluvial erosion due to the exerted fluid shear. The prevailing flow conditions and soil information along with the channel cross-sectional geometry and gradient were used as inputs to a transcritical, one dimensional, hydraulic/geomorphic numerical model, which was used to map the flow characteristics and shear stress conditions near the knickpoint. Such detailed flow calculations do not exist in the published literature. The coupling of field and modeling work resulted in the development of a blueprint methodology, which can be adopted in different parts of the country for evaluating knickpoint evolution. This information will assist local government agencies in better understanding the principal factors that cause knickpoint propagation and help estimate the needed response time to control the propagation of a knickpoint after one has been identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present, there is little fundamental guidance available to assist contractors in choosing when to schedule saw cuts on joints. To conduct pavement finishing and sawing activities effectively, however, contractors need to know when a concrete mixture is going to reach initial set, or when the sawing window will open. Previous research investigated the use of the ultrasonic pulse velocity (UPV) method to predict the saw-cutting window for early entry sawing. The results indicated that the method has the potential to provide effective guidance to contractors as to when to conduct early entry sawing. The aim of this project was to conduct similar work to observe the correlation between initial setting and conventional sawing time. Sixteen construction sites were visited in Minnesota and Missouri over a two-year period. At each site, initial set was determined using a p-wave propagation technique with a commercial device. Calorimetric data were collected using a commercial semi-adiabatic device at a majority of the sites. Concrete samples were collected in front of the paver and tested using both methods with equipment that was set up next to the pavement during paving. The data collected revealed that the UPV method looks promising for early entry and conventional sawing in the field, both early entry and conventional sawing times can be predicted for the range of mixtures tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the variations produced on tsunami propagation and impact over a straight coastline because of the presence of a submarine canyon incised in the continental margin. For ease of calculation we assume that the shoreline and the shelf edge are parallel and that the incident wave approaches them normally. A total of 512 synthetic scenarios have been computed by combining the bathymetry of a continental margin incised by a parameterised single canyon and the incident tsunami waves. The margin bathymetry, the canyon and the tsunami waves have been generated using mathematical functions (e.g. Gaussian). Canyon parameters analysed are: (i) incision length into the continental shelf, which for a constant shelf width relates directly to the distance from the canyon head to the coast, (ii) canyon width, and (iii) canyon orientation with respect to the shoreline. Tsunami wave parameters considered are period and sign. The COMCOT tsunami model from Cornell University was applied to propagate the waves across the synthetic bathymetric surfaces. Five simulations of tsunami propagation over a non-canyoned margin were also performed for reference. The analysis of the results reveals a strong variation of tsunami arrival times and amplitudes reaching the coastline when a tsunami wave travels over a submarine canyon, with changing maximum height location and alongshore extension. In general, the presence of a submarine canyon lowers the arrival time to the shoreline but prevents wave build-up just over the canyon axis. This leads to a decrease in tsunami amplitude at the coastal stretch located just shoreward of the canyon head, which results in a lower run-up in comparison with a non-canyoned margin. Contrarily, an increased wave build-up occurs on both sides of the canyon head, generating two coastal stretches with an enhanced run-up. These aggravated or reduced tsunami effects are modified with (i) proximity of the canyon tip to the coast, amplifying the wave height, (ii) canyon width, enlarging the areas with lower and higher maximum height wave along the coastline, and (iii) canyon obliquity with respect to the shoreline and shelf edge, increasing wave height shoreward of the leeward flank of the canyon. Moreover, the presence of a submarine canyon near the coast produces a variation of wave energy along the shore, eventually resulting in edge waves shoreward of the canyon head. Edge waves subsequently spread out alongshore reaching significant amplitudes especially when coupling with tsunami secondary waves occurs. Model results have been groundtruthed using the actual bathymetry of Blanes Canyon area in the North Catalan margin. This paper underlines the effects of the presence, morphology and orientation of submarine canyons as a determining factor on tsunami propagation and impact, which could prevail over other effects deriving from coastal configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize the different morphological phases that occur in a simple one-dimensional model of propagation of innovations among economic agents [X. Guardiola et al., Phys. Rev E 66, 026121 (2002)]. We show that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the presence of a continuous roughening transition between a flat (system size independent fluctuations) and a rough phase (system size dependent fluctuations). Finite-size scaling studies at the transition strongly suggest that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is responsible for the novel critical behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.