979 resultados para Acid-activated Clays
Resumo:
The electron donor properties of Pr6O11 activated at 300. 500 and 800°C are reported from the studies on adsorption of electron acceptors of various electron affinity (7. 7, 8, 8-tetracyanoquinodimethane. 2, 3. 5, 6-tetrachloro-l, 4-benzoquin one. p-dinitrobenzene. and m-dinitrobenzene) in three solvents (acetonitrile, 1,4-dioxan and ethyl acetate). The extent of electron transfer during adsorption is understood from magnetic measurements and ESR spectral data. The corresponding data on mixed oxides of Pr and Al are reported for various compositions, The acid / base properties of these oxides are determined using a set of Hammett indicators.
Resumo:
Iron and mixed iron aluminium pillared montrnorillonites prepared by partial hydrolysis method were subjected to room temperature exchange with transition metals of the first series. The resulting materials were characterised by different spectroscopic techniques and surface area measurements. About 1-3% transition metals were incorporated into the porous network. The structural stability of the porous network was not affected by exchange. XRD and AI NMR spectroscopy evidenced the presence of iron substituted Al13 like polymers in FeAl pillared systems. Acidity and basicity benefited much as a result of metal exchange. Acidity and basicity were quantified by model reactions, viz., cumene cracking and cyclohexanol decomposition respectively. The presence of basic sites in otherwise acidic pillared clays, though diminutive in amount can be of much importance in acid base catalysed reactions.
Resumo:
The synthesis of dimethyl acetals of carbonyl compounds such as cyclohexanone, acetophenone, and benzophenone has successfully been carried out by the reaction between ketones and methanol using different solid acid catalysts. The strong influence of the textural properties of the catalysts such as acid amount and adsorption properties (surface area and pore volume) determine the catalytic activity. The molecular size of the reactants and products determine the acetalization ability of a particular ketone. The hydrophobicity of the various rare earth exchanged Mg–Y zeolites, K-10 montmorillonite clay, and cerium exchanged montmorillonite (which shows maximum activity) is more determinant than the number of active sites present on the catalyst. The optimum number of acidic sites as well as dehydrating ability of Ce3+-montmorillonite and K-10 montmorillonite clays and various rare earth exchanged Mg–Y zeolites seem to work well in shifting the equilibrium to the product side.
Resumo:
In this venture three distinct class of catalysts such as, pillared clays and transition metal loaded pillared clays , porous clay heterostructures and their transition metal loaded analogues and DTP supported on porous clay heterostructures etc. were prepared and characterized by various physico chemical methods. The catalytic activities of prepared catalysts were comparatively evaluated for the industrially important alkylation, acetalization and oxidation reactions.The general conclusions drawn from the present investigation are Zirconium, iron - aluminium pillared clays were synthesized by ion exchange method and zirconium-silicon porous heterostructures were Summary and conclusions 259 prepared by intergallery template method. Transition metals were loaded in PILCs and PCHs by wet impregnation method. Textural and acidic properties of the clays were modified by pillaring and post pillaring modifications. The shift in 2θ value to lower range and increase in d (001) spacing indicate the success of pillaring process. Surface area, pore volume, average pore size etc. increased dramatically as a result of pillaring process. Porous clay heterostructures have higher surface area, pore volume, average pore diameter and narrow pore size distribution than that of pillared clays. The IR spectrum of PILCs and PCHs are in accordance with literature without much variation compared to parent montmorillonite which indicate that basic clay structure is retained even after modification. The silicon NMR of PCHs materials have intense peaks corresponding to Q4 environment which indicate that mesoporous silica is incorporated between clay layers. Thermo gravimetric analysis showed that thermal stability is improved after the pillaring process. PCH materials have higher thermal stability than PILCs. In metal loaded pillared clays, up to 5% metal species were uniformly dispersed (with the exception of Ni) as evident from XRD and TPR analysis. Chapter 9 260 Impregnation of transition metals in PILCs and PCHs enhanced acidity of catalysts as evident from TPD of ammonia and cumene cracking reactions. For porous clay heterostructures the acidic sites have major contribution from weak and medium acid sites which can be related to the Bronsted sites as evident from TPD of ammonia. Pillared clays got more Lewis acidity than PCHs as inferred from α- methyl styrene selectivity in cumene cracking reaction. SEM images show that layer structure is preserved even after modification. Worm hole like morphology is observed in TEM image of PCHs materials In ZrSiPCHS, Zr exists as Zr 4+ and is incorporated to silica pillars in the intergallary of clay layers as evident from XPS analysis. In copper loaded zirconium pillared clays, copper exists as isolated species with +2 oxidation state at lower loading. At higher loading, Cu exists as clusters as evident from reduction peak at higher temperatures in TPR. In vanadium incorporated PILCs and PCHs, vanadium exist as isolated V5+ in tetrahedral coordination which is confirmed from TPR and UVVis DRS analysis. In cobalt loaded PCHs, cobalt exists as CoO with 2+ oxidation state as confirmed from XPS. Cerium incorporated iron aluminium pillared clay was found to be the best catalyst for the hydroxylation of phenol in aqueous media due to the additional surface area provided by ceria mesopores and its redox properties. Summary and conclusions 261 Cobalt loaded zirconium porous clay heterostructures were found to be promising catalyst for the tertiary butylation of phenol due to higher surface area and acidic properties. Copper loaded pillared clays were found to be good catalyst for the direct hydroxylation of benzene to phenol. Vanadium loaded PCHs catalysts were found to be efficient catalysts for oxidation of benzyl alcohol. DTP was firmly fixed on the mesoporous channels of PCHs by Direct method and functionalization method. DTP supported PCHs catalyst were found to be good catalyst for acetalization of cyclohexanone with more than 90% conversion.
Resumo:
At sites of chronic inflammation, such as in the inflamed rheumatoid joint, activated neutrophils release hydrogen peroxide (H2O2) and the enzyme myeloperoxidase to catalyse the formation of hypochlorous acid (HOCl). 3-chlorotyrosine, a marker of HOCl in vivo, has been observed in synovial fluid proteins from rheumatoid arthritis patients. However the mechanisms of HOCl-induced cytotxicity are unknown. We determined the molecular mechanisms by which HOCl induced cell death in human mesenchymal progenitor cells (MPCs) differentiated into a chondrocytic phenotype as a model of human cartilage cells and show that HOCl induced rapid Bax conformational change, mitochondrial permeability and release of intra-mitochondrial pro-apoptotic proteins which resulted in nuclear translocation of AIF and EndoG. siRNA-mediated knockdown of Bax substantially prevented mitochondrial permeability, release of intra-mitochondrial pro-apoptotic proteins. Cell death was inhibited by siRNA-mediated knockdown of Bax, AIF or EndoG. Although we observed several biochemical markers of apoptosis, caspase activation was not detected either by western blotting, fluorescence activity assays or by using caspase inhibitors to inhibit cell death. This was further supported by findings that (1) in vitro exposure of recombinant human caspases to HOCl caused significant inhibition of caspase activity and (2) the addition of HOCl to staurosporine-treated MPCs inhibited the activity of cellular caspases. Our results show for the first time that HOCl induced Bax-dependent mitochondrial permeability which led to cell death without caspase activity by processes involving AIF/EndoG-dependent pathways. Our study provides a novel insight into the potential mechanisms of cell death in the inflamed human joint. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The glutamate decarboxylase (GAD) system is important for the acid resistance of Listeria monocytogenes. We previously showed that under acidic conditions, glutamate (Glt)/γ-aminobutyrate (GABA) antiport is impaired in minimal media but not in rich ones, like brain heart infusion. Here we demonstrate that this behavior is more complex and it is subject to strain and medium variation. Despite the impaired Glt/GABA antiport, cells accumulate intracellular GABA (GABA(i)) as a standard response against acid in any medium, and this occurs in all strains tested. Since these systems can occur independently of one another, we refer to them as the extracellular (GAD(e)) and intracellular (GAD(i)) systems. We show here that GAD(i) contributes to acid resistance since in a ΔgadD1D2 mutant, reduced GABA(i) accumulation coincided with a 3.2-log-unit reduction in survival at pH 3.0 compared to that of wild-type strain LO28. Among 20 different strains, the GAD(i) system was found to remove 23.11% ± 18.87% of the protons removed by the overall GAD system. Furthermore, the GAD(i) system is activated at milder pH values (4.5 to 5.0) than the GAD(e) system (pH 4.0 to 4.5), suggesting that GAD(i) is the more responsive of the two and the first line of defense against acid. Through functional genomics, we found a major role for GadD2 in the function of GAD(i), while that of GadD1 was minor. Furthermore, the transcription of the gad genes in three common reference strains (10403S, LO28, and EGD-e) during an acid challenge correlated well with their relative acid sensitivity. No transcriptional upregulation of the gadT2D2 operon, which is the most important component of the GAD system, was observed, while gadD3 transcription was the highest among all gad genes in all strains. In this study, we present a revised model for the function of the GAD system and highlight the important role of GAD(i) in the acid resistance of L. monocytogenes.
Resumo:
G protein-coupled receptors of nociceptive neurons can sensitize transient receptor potential (TRP) ion channels, which amplify neurogenic inflammation and pain. Protease-activated receptor 2 (PAR(2)), a receptor for inflammatory proteases, is a major mediator of neurogenic inflammation and pain. We investigated the signaling mechanisms by which PAR(2) regulates TRPV4 and determined the importance of tyrosine phosphorylation in this process. Human TRPV4 was expressed in HEK293 cells under control of a tetracycline-inducible promoter, allowing controlled and graded channel expression. In cells lacking TRPV4, the PAR(2) agonist stimulated a transient increase in [Ca(2+)](i). TRPV4 expression led to a markedly sustained increase in [Ca(2+)](i). Removal of extracellular Ca(2+) and treatment with the TRPV4 antagonists Ruthenium Red or HC067047 prevented the sustained response. Inhibitors of phospholipase A(2) and cytochrome P450 epoxygenase attenuated the sustained response, suggesting that PAR(2) generates arachidonic acid-derived lipid mediators, such as 5',6'-EET, that activate TRPV4. Src inhibitor 1 suppressed PAR(2)-induced activation of TRPV4, indicating the importance of tyrosine phosphorylation. The TRPV4 tyrosine mutants Y110F, Y805F, and Y110F/Y805F were expressed normally at the cell surface. However, PAR(2) was unable to activate TRPV4 with the Y110F mutation. TRPV4 antagonism suppressed PAR(2) signaling to primary nociceptive neurons, and TRPV4 deletion attenuated PAR(2)-stimulated neurogenic inflammation. Thus, PAR(2) activation generates a signal that induces sustained activation of TRPV4, which requires a key tyrosine residue (TRPV4-Tyr-110). This mechanism partly mediates the proinflammatory actions of PAR(2).
Resumo:
The involvement of pertussis toxin (PTX)-sensitive and -insensitive pathways in the activation of the mitogen-activated protein kinase (MAPK) cascade was examined in ventricular cardiomyocytes cultured from neonatal rats. A number of agonists that activate heterotrimeric G-protein-coupled receptors stimulated MAPK activity after exposure for 5 min. These included foetal calf serum (FCS), endothelin-1 (these two being the most effective of the agonists examined), phenylephrine, endothelin-3, lysophosphatidic acid, carbachol, isoprenaline and angiotensin II. Activation of MAPK and MAPK kinase (MEK) by carbachol returned to control levels within 30-60 min, whereas activation by FCS was more sustained. FPLC on Mono Q showed that carbachol and FCS activated two peaks of MEK and two peaks of MAPK (p42MAPK and p44MAPK). Pretreatment of cells with PTX for 24 h inhibited the activation of MAPK by carbachol, FCS and lysophosphatidic acid, but not that by endothelin-1, phenylephrine or isoprenaline. Involvement of G-proteins in the activation of the cardiac MAPK cascade was demonstrated by the sustained (PTX-insensitive) activation of MAPK (and MEK) after exposure of cells to AlF4-. AlF4- activated PtdIns hydrolysis, as did endothelin-1, endothelin-3, phenylephrine and FCS. In contrast, the effect of lysophosphatidic acid on PtdIns hydrolysis was small and carbachol was without significant effect even after prolonged exposure. We conclude that PTX-sensitive (i.e. Gi/G(o)-linked) and PTX-insensitive (i.e. Gq/Gs-linked) pathways of MAPK activation exist in neonatal ventricular myocytes. FCS may stimulate the MAPK cascade through both pathways.
Resumo:
Phenylephrine and noradrenaline (alpha-adrenergic agonism) or isoprenaline (beta-adrenergic agonism) stimulated protein synthesis rates, increased the activity of the atrial natriuretic factor gene promoter and activated mitogen-activated protein kinase (MAPK). The EC50 for MAPK activation by noradrenaline was 2-4 microM and that for isoprenaline was 0.2-0.3 microM. Maximal activation of MAPK by isoprenaline was inhibited by the beta-adrenergic antagonist, propranolol, whereas the activation by noradrenaline was inhibited by the alpha1-adrenergic antagonist, prazosin. FPLC on a Mono-Q column separated two peaks of MAPK (p42MAPK and p44MAPK) and two peaks of MAPK-activating activity (MEK) activated by isoprenaline or noradrenaline. Prolonged phorbol ester exposure partially down-regulated the activation of MAPK by noradrenaline but not by isoprenaline. This implies a role for protein kinase C in MAPK activation by noradrenaline but not isoprenaline. A role for cyclic AMP in activation of the MAPK pathway was eliminated when other agonists that elevate cyclic AMP in the cardiac myocyte did not activate MAPK. In contrast, MAPK was activated by exposure to ionomycin, Bay K8644 or thapsigargin that elevate intracellular Ca2+. Furthermore, depletion of extracellular Ca2+ concentrations with bis-(o-aminophenoxy)ethane-NNN'N'-tetra-acetic acid (BAPTA) or blocking of the L-type Ca2+ channel with nifepidine or verapamil inhibited the response to isoprenaline without inhibiting the responses to noradrenaline. We conclude that alpha- and beta-adrenergic agonists can activate the MEK/MAPK pathway in the heart by different signalling pathways. Elevation of intracellular Ca2+ rather than cyclic AMP appears important in the activation of MAPK by isoprenaline in the cardiac myocyte.
Resumo:
The p21-activated protein kinases (PAKs) may participate in signalling from Cdc42/Rac1 to the stress-regulated MAPKs (SAPKs/JNKs and p38-/HOG-1-related-MAPKs). We characterized the expression and regulation of alpha PAK in cultured ventricular myocytes. alpha PAK was specifically immunoprecipitated from myocyte extracts. High basal alpha PAK activity was detected in unstimulated myocytes. Its activity was increased rapidly (<30 s) by hyperosmotic shock in the presence of okadaic acid, and was maximal by 3 min (187 +/- 7% relative to unstimulated cells). Endothelin-1 and interleukin-1beta, which also activate SAPKs/JNKs, did not increase alpha PAK activity and presumably act through different PAK isoforms or other mechanisms.
Resumo:
Background & aim: To compare the effect of fish oil-based (FO) lipid emulsions (LE) for parenteral administration with standard LE and a new FO containing LE composed of four different oils on the antigen presentation and inflammatory variables. Methods: Phytohemagglutinin (PHA) activated human mononuclear leukocytes were cultured with different LE - Control: without LE; SO: soybean oil; SO/FO: soybean and FO (4:1); MCT/SO: medium chain triglycerides and SO (1:1); MCT/SO/FO: MCT/SO and FO (4:1) and SMOF: a new LE containing FO. Cytokine production was evaluated by ELISA, the expression of antigen-presenting and co-stimulatory surface molecules were analyzed by flow cytometry and lymphocyte proliferation was assessed by H(3)-Thymidine incorporation, after tetanus toxoid-induced activation. Results: All LE decreased the HLA-DR and increased CD28 and CD152 expression on monocytes/macrophages and lymphocytes surface (p < 0.05). SO/FO and MCT/SO/FO decreased lymphocyte proliferation (p<0.05). All LE decreased IL-2 product ion, but this effect was enhanced with MCT/SO/FO and SMOF (p < 0.05). MCT/SOTO decreased IL-6 and increased IL-10, whereas SO had the opposite effect (p < 0.05). Conclusion: FO LE inhibited lymphocyte proliferation and had an anti-inflammatory effect. These effects seem to be enhanced when FO is mixed with MCT/SO. SMOF had a neutral impact on lymphocyte proliferation and IL-6 and IL-10 production.
Resumo:
Introduction: Cytolethal distending toxin (CDT) is a DNA-targeting agent produced by certain pathogenic gram-negative bacteria such as the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. CDT targets lymphocytes and other cells causing cell cycle arrest and apoptosis, impairing the host immune response and contributing to the persistence of infections caused by this microorganism. In this study we explored the effects of CDT on the innate immune response, by investigating how it affects production of nitric oxide (NO) by macrophages. Methods: Murine peritoneal macrophages were stimulated with Escherichia coli sonicates and NO production was measured in the presence or not of active CDT. Results: We observed that CDT promptly and significantly inhibited NO production by inducible nitric oxide synthase (iNOS) in a dose-dependent manner. This inhibition is directed towards interferon-gamma-dependent pathways and is not mediated by either interleukin-4 or interleukin-10. Conclusion: This mechanism may constitute an important aspect of the immunosuppression mediated by CDT and may have potential clinical implications in A. actinomycetemcomitans infections.
Resumo:
The phytohormones gibberellin (GA) and abscisic acid (ABA) regulate important developments events in germinating seeds. Specifically, GA induces the expression of hyrolase genes, like the α-amylase gene Amy32b, which mobilizes starch reserves to be used by the embryo, and ABA suppresses this induction. Recent advancements identified ABA and GA receptors and key components in the signaling pathways, however, the mechanism of crosstalk between the hormones remains largely unknown. To further elucidate the mechanism of ABA suppression of GA-induced genes, we focused on the transcription factor TaABF1, a member of the ABA response element binding factor family. TaABF1 has been shown to physically interact with the SnRK2 kinase PKABA1 and overexpression of TaABF1 or PKABA1 can suppress Amy32b. We carried out particle bombardment experiments to investigate how TaABF1 suppresses Amy32b and how TaABF1 is activated by ABA. The role of TaABF1 in ABA-mediated suppression of Amy32b is more complicated than hypothesized. Unlike PKABA1, overexpression of TaABF1 did not cause a decrease of GAMyb expression and in fact resulted in an increase of GAMyb expression. When TaABF1 and GAMyb were simultaneously overexpressed in aleurone, the GAMyb induction of Amy32b was unaffected, indicating that the target of TaABF1 action must be upstream of GAMyb. Furthermore, TaABF1 and ABA demonstrated an additive effect on the suppression of Amy32b. Based on our findings, we propose a model in which PKABA1 activates two separate targets, one being TaABF1 which then modifies an unknown target upstream of GAMyb and the other being an unknown transcription factor that suppresses GAMyb transcription.
Resumo:
São apresentados os aspectos teóricos, práticos e bibliográficos envolvidos no desenvolvimento da tese de doutorado intitulada Modificação estrutural de bentonitas nacionais: caracterização e estudos de adsorção. O trabalho consistiu no desenvolvimento de um material adsorvente a partir de bentonitas, do tipo montmorilonitas, modificadas estruturalmente com o objetivo de aumentar sua capacidade de adsorção de poluentes, orgânicos e inorgânicos. O estudo visa incrementar o valor agregado deste recurso mineral e insere-se na área de tratamento de efluentes líquidos usando adsorventes não tradicionais, eficientes e de baixo custo em substituição ao carvão ativado ou às resinas de troca iônica. Foram estudadas as propriedades físicas e químicas; distribuição de tamanho de partículas, área superficial, potenciais eletrocinéticos, capacidade de troca catiônica, composição mineralógica, morfologia superficial e espaçamento basal, bem como as propriedades adsorptivas dos argilominerais não tratados e modificados, não modificadas e pilarizadas respectivamente. Também são discutidos os mecanismos de adsorção envolvidos e o desenvolvimento de um reator contínuo (adsorção em flocos) e de separação sólido/líquido. As modificações estruturais dos argilominerais foram realizadas via homoionização com cloreto de cálcio e posterior intercalação com compostos orgânicos com ação quelante de metais. A FENAN, bentonita obtida pela intercalação com Orto Fenantrolina (OF), foi a que apresentou melhor viabilidade técnica em termos de adsorção, adsorção/dessorção, floculação e de acumulação de poluentes na forma floculada e não floculada. Adicionalmente os estudos de reversibilidade da intercalação revelaram a alta estabilidade da OF na FENAN, em soluções fortemente ácidas, onde aproximadamente 90% da OF permanece ligada à superfície da argila. A quantidade de OF adsorvida na forma de unidades micelares foi de 112 mg por grama de bentonita a pH 8,5 ± 0,5. A caracterização das bentonitas, via difração de Raios X, análise térmica, microscopia eletrônica de varredura e por microscopia de força atômica, revelou que as FENAN possuem um comportamento estrutural muito estável ao longo da seqüência de adsorção/dessorção e que após a adsorção de poluentes inorgânicos, o quelato metálico formado apresenta alta estabilidade dentro da estrutura da organobentonita. A capacidade de acumulação alcançada nas FENAN foi de 110 mg de Cu/g de bentonita, valor superior à de diversos materiais adsorventes alternativos propostos em outros trabalhos similares. Os estudos de acumulação das FENAN floculadas – FENANFLOC, indicaram que a presença de floculante, na quantidade utilizada, não afeta significativamente a capacidade de remoção das bentonitas modificadas. Este comportamento apresentado, permitiu o desenvolvimento do Reator Expandido de Flocos Adsorventes (REFA), cujas características e parâmetros operacionais são discutidos em detalhe. Finalmente, os resultados são discutidos em termos dos fenômenos interfaciais envolvidos e dos potenciais práticos deste novo adsorvente e da nova técnica de adsorção em flocos no REFA.
Resumo:
The clay mineral attapulgite is a group of hormitas, which has its structures formed by microchannels, which give superior technological properties classified the industrial clays, clays of this group has a very versatile range of applications, ranging from the drilling fluid for wells oil has applications in the pharmaceutical industry. Such properties can be improved by activating acid and / or thermal activation. The attapulgite when activated can improve by up to 5-8 times some of its properties. The clay was characterized by X-ray diffraction, fluorescence, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy and transmission electron microscopy before and after chemical activation. It can be seen through the results the efficiency of chemical treatment, which modified the clay without damaging its structure, as well as production of polymer matrix composites with particles dispersed atapugita