253 resultados para Accelerometer
Resumo:
The widespread of low cost embedded electronics makes it easier to implement the smart devices that can understand either the environment or the user behaviors. The main object of this project is to design and implement home use portable smart electronics, including the portable monitoring device for home and office security and the portable 3D mouse for convenient use. Both devices in this project use the MPU6050 which contains a 3 axis accelerometer and a 3 axis gyroscope to sense the inertial motion of the door or the human hands movement. For the portable monitoring device for home and office security, MPU6050 is used to sense the door (either home front door or cabinet door) movement through the gyroscope, and Raspberry Pi is then used to process the data it receives from MPU6050, if the data value exceeds the preset threshold, Raspberry Pi would control the USB Webcam to take a picture and then send out an alert email with the picture to the user. The advantage of this device is that it is a small size portable stand-alone device with its own power source, it is easy to implement, really cheap for residential use, and energy efficient with instantaneous alert. For the 3D mouse, the MPU6050 would use both the accelerometer and gyroscope to sense user hands movement, the data are processed by MSP430G2553 through a digital smooth filter and a complementary filter, and then the filtered data will pass to the personal computer through the serial COM port. By applying the cursor movement equation in the PC driver, this device can work great as a mouse with acceptable accuracy. Compared to the normal optical mouse we are using, this mouse does not need any working surface, with the use of the smooth and complementary filter, it has certain accuracy for normal use, and it is easy to be extended to a portable mouse as small as a finger ring.
Resumo:
Objective: To evaluate a new triaxial accelerometer device for prediction of energy expenditure, measured as VO2/kg, in obese adults and normal-weight controls during activities of daily life. Subjects and methods: Thirty-seven obese adults (Body Mass Index (BMI) 37±5.4) and seventeen controls (BMI 23±1.8) performed eight activities for 5 to 8 minutes while wearing a triaxial accelerometer on the right thigh. Simultaneously, VO2 and VCO2 were measured using a portable metabolic system. The relationship between accelerometer counts (AC) and VO2/kg was analysed using spline regression and linear mixed-effects models. Results: For all activities, VO2/kg was significantly lower in obese participants than in normalweight controls. A linear relationship between AC and VO2/kg existed only within accelerometer values from 0 to 300 counts/min, with an increase of 3.7 (95%-confidence interval (CI) 3.4 - 4.1) and 3.9 ml/min (95%-CI 3.4 - 4.3) per increase of 100 counts/min in obese and normal-weight adults, respectively. Linear modelling of the whole range yields wide prediction intervals for VO2/kg of ± 6.3 and ±7.3 ml/min in both groups. Conclusion: In obese and normal-weight adults, the use of AC for predicting energy expenditure, defined as VO2/kg, from a broad range of physical activities, characterized by varying intensities and types of muscle work, is limited.
Resumo:
BACKGROUND Joint hypermobility is known to be associated with joint and muscle pain, joint instability and osteoarthritis. Previous work suggested that those individuals present an altered neuromuscular behavior during activities such as level walking. Therefore, the aim of this study was to explore the differences in ground reaction forces, temporal parameters and muscle activation patterns during gait between normomobile and hypermobile women, including symptomatic and asymptomatic hypermobile individuals. METHODS A total of 195 women were included in this cross-sectional study, including 67 normomobile (mean 24.8 [SD 5.4] years) and 128 hypermobile (mean 25.8 [SD 5.4] years), of which 56 were further classified as symptomatic and 47 as asymptomatic. The remaining 25 subjects could not be further classified. Ground reaction forces and muscle activation from six leg muscles were measured while the subjects walked at a self-selected speed on an instrumented walkway. Temporal parameters were derived from ground reaction forces and a foot accelerometer. The normomobile and hypermobile groups were compared using independent samples t-tests, whereas the normomobile, symptomatic and asymptomatic hypermobile groups were compared using one-way ANOVAs with Tukey post-hoc tests (significance level=0.05). FINDINGS Swing phase duration was higher among hypermobile (P=0.005) and symptomatic hypermobile (P=0.018) compared to normomobile women. The vastus medialis (P=0.049) and lateralis (P=0.030) and medial gastrocnemius (P=0.011) muscles showed higher mean activation levels during stance in the hypermobile compared to the normomobile group. INTERPRETATION Hypermobile women might alter their gait pattern in order to stabilize their knee joint.
Relationship between the objectively-assessed neighborhood area and activity behavior in Swiss youth
Resumo:
Background Neighborhood attributes are modifiable determinants of physical activity (PA) and sedentary behavior (SB). We tested whether the objectively-assessed built and social environment was associated with PA and SB in Swiss youth and whether sex, age and the socioeconomic position (Swiss-SEP) modified such associations. Methods We combined data of 1742 youth (ages 4 to 17) from seven studies conducted within Switzerland between 2005–2010. All youth provided accelerometer data and a home address, which was linked to objective environmental data and the Swiss-SEP-index. Associations between neighborhood attributes and PA were analyzed by multivariable multilevel regression analyses. Results The extent of green areas and building density was positively associated with PA in the total sample (p < 0.05). Factors representing centrally located areas, and more schoolchildren living nearby tended to increase PA in secondary schoolchildren, boys and those from lower-ranked socioeconomic areas. In primary schoolchildren, the extent of green areas was positively associated with PA (p = 0.05). Associations between neighborhood attributes and PA were more pronounced in youth from low socioeconomic areas. Conclusions The results indicate that some associations between neighborhood attributes and PA differ by age, sex and socioeconomic area. This should be taken into account when planning interventions to increase childhood PA.
Resumo:
BACKGROUND: Enhancing physical activity in overweight and obese individuals is an important means to promote health in this target population. The Health Action Process Approach (HAPA), which was the theoretical framework of this study, focuses on individual self-regulation variables for successful health behavior change. One key self-regulation variable of this model is action control with its three subfacets awareness of intentions, self-monitoring and regulatory effort. The social context of individuals, however, is usually neglected in common health behavior change theories. In order to integrate social influences into the HAPA, this randomized controlled trial investigated the effectiveness of a dyadic conceptualization of action control for promoting physical activity. METHODS/DESIGN: This protocol describes the design of a single-blind randomized controlled trial, which comprises four experimental groups: a dyadic action control group, an individual action control group and two control groups. Participants of this study are overweight or obese, heterosexual adult couples who intend to increase their physical activity. Blocking as means of a gender-balanced randomization is used to allocate couples to conditions and partners to either being the target person of the intervention or to the partner condition. The ecological momentary intervention takes place in the first 14 days after baseline assessment and is followed by another 14 days diary phase without intervention. Follow-ups are one month and six months later. Subsequent to the six-months follow-up another 14 days diary phase takes place.The main outcome measures are self-reported and accelerometer-assessed physical activity. Secondary outcome measures are Body Mass Index (BMI), aerobic fitness and habitual physical activity. DISCUSSION: This is the first study examining a dyadic action control intervention in comparison to an individual action control condition and two control groups applying a single-blind randomized control trial. Challenges with running couples studies as well as advantages and disadvantages of certain design-related decisions are discussed. This RCT was funded by the Swiss National Science Foundation (PP00P1_133632/1) and was registered on 27/04/2012 at http://www.isrctn.com/ISRCTN15705531.
Resumo:
BACKGROUND: Enhancing physical activity in overweight and obese individuals is an important means to promote health in this target population. The Health Action Process Approach (HAPA), which was the theoretical framework of this study, focuses on individual self-regulation variables for successful health behavior change. One key self-regulation variable of this model is action control with its three subfacets awareness of intentions, self-monitoring and regulatory effort. The social context of individuals, however, is usually neglected in common health behavior change theories. In order to integrate social influences into the HAPA, this randomized controlled trial investigated the effectiveness of a dyadic conceptualization of action control for promoting physical activity. METHODS/DESIGN: This protocol describes the design of a single-blind randomized controlled trial, which comprises four experimental groups: a dyadic action control group, an individual action control group and two control groups. Participants of this study are overweight or obese, heterosexual adult couples who intend to increase their physical activity. Blocking as means of a gender-balanced randomization is used to allocate couples to conditions and partners to either being the target person of the intervention or to the partner condition. The ecological momentary intervention takes place in the first 14 days after baseline assessment and is followed by another 14 days diary phase without intervention. Follow-ups are one month and six months later. Subsequent to the six-months follow-up another 14 days diary phase takes place.The main outcome measures are self-reported and accelerometer-assessed physical activity. Secondary outcome measures are Body Mass Index (BMI), aerobic fitness and habitual physical activity. DISCUSSION: This is the first study examining a dyadic action control intervention in comparison to an individual action control condition and two control groups applying a single-blind randomized control trial. Challenges with running couples studies as well as advantages and disadvantages of certain design-related decisions are discussed. This RCT was funded by the Swiss National Science Foundation (PP00P1_133632/1) and was registered on 27/04/2012 at http://www.isrctn.com/ISRCTN15705531.
Resumo:
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first Earth explorer core mission of the European Space Agency. It was launched on March 17, 2009 into a Sun-synchronous dusk-dawn orbit and re-entered into the Earth’s atmosphere on November 11, 2013. The satellite altitude was between 255 and 225 km for the measurement phases. The European GOCE Gravity consortium is responsible for the Level 1b to Level 2 data processing in the frame of the GOCE High-level processing facility (HPF). The Precise Science Orbit (PSO) is one Level 2 product, which was produced under the responsibility of the Astronomical Institute of the University of Bern within the HPF. This PSO product has been continuously delivered during the entire mission. Regular checks guaranteed a high consistency and quality of the orbits. A correlation between solar activity, GPS data availability and quality of the orbits was found. The accuracy of the kinematic orbit primarily suffers from this. Improvements in modeling the range corrections at the retro-reflector array for the SLR measurements were made and implemented in the independent SLR validation for the GOCE PSO products. The satellite laser ranging (SLR) validation finally states an orbit accuracy of 2.42 cm for the kinematic and 1.84 cm for the reduced-dynamic orbits over the entire mission. The common-mode accelerations from the GOCE gradiometer were not used for the official PSO product, but in addition to the operational HPF work a study was performed to investigate to which extent common-mode accelerations improve the reduced-dynamic orbit determination results. The accelerometer data may be used to derive realistic constraints for the empirical accelerations estimated for the reduced-dynamic orbit determination, which already improves the orbit quality. On top of that the accelerometer data may further improve the orbit quality if realistic constraints and state-of-the-art background models such as gravity field and ocean tide models are used for the reduced-dynamic orbit determination.
Resumo:
Efforts are ongoing to decrease the noise of the GRACE gravity field models and hence to arrive closer to the GRACE baseline. The most significant error sources belong the untreated errors in the observation data and the imperfections in the background models. The recent study (Bandikova&Flury,2014) revealed that the current release of the star camera attitude data (SCA1B RL02) contain noise systematically higher than expected by about a factor 3-4. This is due to an incorrect implementation of the algorithms for quaternion combination in the JPL processing routines. Generating improved SCA data requires that valid data from both star camera heads are available which is not always the case because the Sun and Moon at times blind one camera. In the gravity field modeling, the attitude data are needed for the KBR antenna offset correction and to orient the non-gravitational linear accelerations sensed by the accelerometer. Hence any improvement in the SCA data is expected to be reflected in the gravity field models. In order to quantify the effect on the gravity field, we processed one month of observation data using two different approaches: the celestial mechanics approach (AIUB) and the variational equations approach (ITSG). We show that the noise in the KBR observations and the linear accelerations has effectively decreased. However, the effect on the gravity field on a global scale is hardly evident. We conclude that, at the current level of accuracy, the errors seen in the temporal gravity fields are dominated by errors coming from sources other than the attitude data.
Resumo:
Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.
Resumo:
Behavior is one of the most important indicators for assessing cattle health and well-being. The objective of this study was to develop and validate a novel algorithm to monitor locomotor behavior of loose-housed dairy cows based on the output of the RumiWatch pedometer (ITIN+HOCH GmbH, Fütterungstechnik, Liestal, Switzerland). Data of locomotion were acquired by simultaneous pedometer measurements at a sampling rate of 10 Hz and video recordings for manual observation later. The study consisted of 3 independent experiments. Experiment 1 was carried out to develop and validate the algorithm for lying behavior, experiment 2 for walking and standing behavior, and experiment 3 for stride duration and stride length. The final version was validated, using the raw data, collected from cows not included in the development of the algorithm. Spearman correlation coefficients were calculated between accelerometer variables and respective data derived from the video recordings (gold standard). Dichotomous data were expressed as the proportion of correctly detected events, and the overall difference for continuous data was expressed as the relative measurement error. The proportions for correctly detected events or bouts were 1 for stand ups, lie downs, standing bouts, and lying bouts and 0.99 for walking bouts. The relative measurement error and Spearman correlation coefficient for lying time were 0.09% and 1; for standing time, 4.7% and 0.96; for walking time, 17.12% and 0.96; for number of strides, 6.23% and 0.98; for stride duration, 6.65% and 0.75; and for stride length, 11.92% and 0.81, respectively. The strong to very high correlations of the variables between visual observation and converted pedometer data indicate that the novel RumiWatch algorithm may markedly improve automated livestock management systems for efficient health monitoring of dairy cows.
Resumo:
Physical activity has been, and remains, a significant public health issue. Thus, increasing physical activity has been identified as a top priority according to Healthy People 2010. Various behavioral variables have been associated with participation in physical activity, including the Type A behavior pattern (TABP). This study was a secondary data analysis of the Women On The Move pilot study data and examined the relationship between Type A behavior with physical activity. The study population consisted of fifty-six (56) adult minority women 40 years of age and above. The Thurstone Activity Scale was adapted for use in this study to measure TABP. Physical activity behavior was measured using an accelerometer (Computer Science Application, [CSA]) and a physical activity diary. All study questions were examined using multiple linear regression analysis. In all analyses age, household income, and level of education were entered as covariates. The results found no association with TABP and exercise or physical activity. More research involving a larger, more active study population is recommended in order to more precisely determine the relationship of TABP and physical activity. ^
Resumo:
To evaluate the mechanical stress on the volcanic edifice that results from lava lake level variations, we deployed a self-recording, differential capacitance (MEMS Inertial Sensor STMicroelectronics LIS3LV02DQ), 3-axis X6-1A accelerometer (Gulf Coast Data Concepts, LLC) at a distance of ~100m from the center of the Nyiragongo lava lake on freshly erupted lava flows. The device range was used in high (12-bit) resolution mode, which corresponds to a sensitivity of about 1 mg. The device was set to high-sensitivity mode with four additional bits to improve resolution, yet with a much lower signal-noise ratio. Once in position, the accelerometer continuously recorded data for three-day periods in June 2010. The system was oriented so that the X- and Y-axes form a plain parallel to the lava lake. During data collection, we did not attempt to calibrate the precision of the angle because relative G-force measurements were required instead of absolute G-force measurements. To distinguish the tiny accelerations caused by temperature differentials of the atmosphere, from the forces caused by magma movements, the temperature of the X6-1A device was continuously recorded. Temperature variations were corrected for by applying a de-correlation method to the recorded signal. Data was collected at 20 Hz, regrouped into batches that cover 1 hour per observation and associated with one averaged temperature measurement. This method was reproducible because diurnal temperature variations were the main cause for heating and cooling.
Resumo:
Laminatedglass is composed of two glass layers and a thin intermediate PVB layer, strongly influencing PVB's viscoelastic behaviour its dynamic response. While natural frequencies are relatively easily identified even with simplified FE models, damping ratios are not identified with such an ease. In order to determine to what extent external factors influence dampingidentification, different tests have been carried out. The external factors considered, apart from temperature, are accelerometers, connection cables and the effect of the glass layers. To analyse the influence of the accelerometers and their connection cables a laser measuring device was employed considering three possibilities: sample without instrumentation, sample with the accelerometers fixed and sample completely instrumented. When the sample is completely instrumented, accelerometer readings are also analysed. To take into consideration the effect of the glass layers, tests were realised both for laminatedglass and monolithic samples. This paper presents in depth data analysis of the different configurations and establishes criteria for data acquisition when testing laminatedglass.
Resumo:
This article focuses on the evaluation of a biometric technique based on the performance of an identifying gesture by holding a telephone with an embedded accelerometer in his/her hand. The acceleration signals obtained when users perform gestures are analyzed following a mathematical method based on global sequence alignment. In this article, eight different scores are proposed and evaluated in order to quantify the differences between gestures, obtaining an optimal EER result of 3.42% when analyzing a random set of 40 users of a database made up of 80 users with real attempts of falsification. Moreover, a temporal study of the technique is presented leeding to the need to update the template to adapt the manner in which users modify how they perform their identifying gesture over time. Six updating schemes have been assessed within a database of 22 users repeating their identifying gesture in 20 sessions over 4 months, concluding that the more often the template is updated the better and more stable performance the technique presents.
Resumo:
El proyecto, “Aplicaciones de filtrado adaptativo LMS para mejorar la respuesta de acelerómetros”, se realizó con el objetivo de eliminar señales no deseadas de la señal de información procedentes de los acelerómetros para aplicaciones automovilísticas, mediante los algoritmos de los filtros adaptativos LMS. Dicho proyecto, está comprendido en tres áreas para su realización y ejecución, los cuales fueron ejecutados desde el inicio hasta el último día de trabajo. En la primera área de aplicación, diseñamos filtros paso bajo, paso alto, paso banda y paso banda eliminada, en lo que son los filtros de butterworth, filtros Chebyshev, de tipo uno como de tipo dos y filtros elípticos. Con esta primera parte, lo que se quiere es conocer, o en nuestro caso, recordar el entorno de Matlab, en sus distintas ecuaciones prediseñadas que nos ofrece el mencionado entorno, como también nos permite conocer un poco las características de estos filtros. Para posteriormente probar dichos filtros en el DSP. En la segunda etapa, y tras recordar un poco el entorno de Matlab, nos centramos en la elaboración y/o diseño de nuestro filtro adaptativo LMS; experimentado primero con Matlab, para como ya se dijo, entender y comprender el comportamiento del mismo. Cuando ya teníamos claro esta parte, procedimos a “cargar” el código en el DSP, compilarlo y depurarlo, realizando estas últimas acciones gracias al Visual DSP. Resaltaremos que durante esta segunda etapa se empezó a excitar las entradas del sistema, con señales provenientes del Cool Edit Pro, y además para saber cómo se comportaba el filtro adaptativo LMS, se utilizó señales provenientes de un generador de funciones, para obtener de esta manera un desfase entre las dos señales de entrada; aunque también se utilizó el propio Cool Edit Pro para obtener señales desfasadas, pero debido que la fase tres no podíamos usar el mencionado software, realizamos pruebas con el generador de funciones. Finalmente, en la tercera etapa, y tras comprobar el funcionamiento deseado de nuestro filtro adaptativo DSP con señales de entrada simuladas, pasamos a un laboratorio, en donde se utilizó señales provenientes del acelerómetro 4000A, y por supuesto, del generador de funciones; el cual sirvió para la formación de nuestra señal de referencia, que permitirá la eliminación de una de las frecuencias que se emitirá del acelerómetro. Por último, cabe resaltar que pudimos obtener un comportamiento del filtro adaptativo LMS adecuado, y como se esperaba. Realizamos pruebas, con señales de entrada desfasadas, y obtuvimos curiosas respuestas a la salida del sistema, como son que la frecuencia a eliminar, mientras más desfasado estén estas señales, mas se notaba. Solucionando este punto al aumentar el orden del filtro. Finalmente podemos concluir que pese a que los filtros digitales probados en la primera etapa son útiles, para tener una respuesta lo más ideal posible hay que tener en cuenta el orden del filtro, el cual debe ser muy alto para que las frecuencias próximas a la frecuencia de corte, no se atenúen. En cambio, en los filtros adaptativos LMS, si queremos por ejemplo, eliminar una señal de entre tres señales, sólo basta con introducir la frecuencia a eliminar, por una de las entradas del filtro, en concreto la señal de referencia. De esta manera, podemos eliminar una señal de entre estas tres, de manera que las otras dos, no se vean afectadas por el procedimiento. Abstract The project, "LMS adaptive filtering applications to improve the response of accelerometers" was conducted in order to remove unwanted signals from the information signal from the accelerometers for automotive applications using algorithms LMS adaptive filters. The project is comprised of three areas for implementation and execution, which were executed from the beginning until the last day. In the first area of application, we design low pass filters, high pass, band pass and band-stop, as the filters are Butterworth, Chebyshev filters, type one and type two and elliptic filters. In this first part, what we want is to know, or in our case, remember the Matlab environment, art in its various equations offered by the mentioned environment, as well as allows us to understand some of the characteristics of these filters. To further test these filters in the DSP. In the second stage, and recalling some Matlab environment, we focus on the development and design of our LMS adaptive filter; experimented first with Matlab, for as noted above, understand the behavior of the same. When it was clear this part, proceeded to "load" the code in the DSP, compile and debug, making these latest actions by the Visual DSP. Will highlight that during this second stage began to excite the system inputs, with signals from the Cool Edit Pro, and also for how he behaved the LMS adaptive filter was used signals from a function generator, to thereby obtain a gap between the two input signals, but also used Cool Edit Pro himself for phase signals, but due to phase three could not use such software, we test the function generator. Finally, in the third stage, and after checking the desired performance of our DSP adaptive filter with simulated input signals, we went to a laboratory, where we used signals from the accelerometer 4000A, and of course, the function generator, which was used for the formation of our reference signal, enabling the elimination of one of the frequencies to be emitted from the accelerometer. Note that they were able to obtain a behavior of the LMS adaptive filter suitable as expected. We test with outdated input signals, and got curious response to the output of the system, such as the frequency to remove, the more outdated are these signs, but noticeable. Solving this point with increasing the filter order. We can conclude that although proven digital filters in the first stage are useful, to have a perfect answer as possible must be taken into account the order of the filter, which should be very high for frequencies near the frequency cutting, not weakened. In contrast, in the LMS adaptive filters if we for example, remove a signal from among three signals, only enough to eliminate the frequency input on one of the inputs of the filter, namely the reference signal. Thus, we can remove a signal between these three, so that the other two, not affected by the procedure.