362 resultados para Accelerometer
Resumo:
Background Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth. Materials and Methods We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer's hands and the manikin's chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor. Results The median (IQR) percent error was 5.9% (2.8-10.3), 6.3% (2.9-11.3), and 2.5% (1.2-4.4) for depth and 1.7% (0.0-2.3), 0.0% (0.0-2.0), and 0.9% (0.4-1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method. Conclusions Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest acceleration signal. The algorithm based on spectral analysis showed the best performance. Despite these encouraging results, further research should be conducted to asses the performance of these algorithms with clinical data.
Resumo:
Estudos epidemiológicos têm mostrado rápido aumento na prevalência de sobrepeso e obesidade, tanto na população adulta quanto em crianças e adolescentes, sendo o exercício físico considerado uma importante estratégia tanto na prevenção quanto no tratamento do ganho de peso. Apesar disso, estudos que avaliam os efeitos isolados do exercício físico no controle ponderal têm apresentado resultados conflitantes. Esses achados podem ser explicados por um possível efeito compensatório provocado pela sessão de exercício nas atividades físicas realizadas em períodos subsequentes. Portanto, o objetivo deste estudo é avaliar o efeito de diferentes intensidades do exercício físico no gasto energético com atividades físicas em adolescentes com excesso de peso. O desenho do estudo foi experimental do tipo crossover com realização de três sessões (controle, exercício moderado e exercício vigoroso). Vinte e quatro adolescentes de 11 a 13 anos, estudantes da rede municipal de ensino de Niterói-RJ, do sexo masculino e com excesso de peso concordaram em participar do estudo. O gasto energético com atividades físicas foi avaliado por acelerômetros triaxiais colocados durante as sessões experimentais e retirado após seis dias. Os dados referentes ao gasto energético associado às atividades físicas foram avaliados na 1 hora de utilização do acelerômetro e durante os seis dias de acompanhamento. Além disso, os valores também foram tratados de forma cumulativa, tendo sido calculado o gasto energético total de 24, 48, 72, 96, 120 e 144 horas. Análise de variância foi utilizada para avaliar as possíveis diferenças entre o gasto energético na primeira hora de registro entre os três grupos seguida do teste post hoc de Scheffé. A comparação das variações das médias de gasto energético (por dia e acumuladas) foi realizada por meio de modelos lineares mistos. A comparação do gasto energético durante a 1 hora de registro demonstrou diferença significativa entre todos três grupos, com médias de 82, 286 e 343 kcal para os grupos controle, moderado e intenso, respectivamente (p<0.001). O mesmo padrão de diferença para o gasto energético entre os grupos se manteve ao final de 24 horas (704 vs 970 vs 1056 kcal, p<0.001) e no gasto energético acumulado durante os seis dias de acompanhamento (5102 vs 5193 vs 5271 kcal, p<0.001). A análise do gasto energético por dia demonstrou uma redução do gasto energético dos grupos moderado e vigoroso a partir do segundo dia e que se manteve até o sexto dia de acompanhamento. Desse modo, pode-se concluir que uma única sessão de exercício físico aeróbio parece modificar o comportamento das atividades físicas espontâneas realizadas ao longo de 6 dias em adolescentes com excesso de peso. Entretanto, apesar do efeito compensatório observado, o gasto energético acumulado durante os seis dias para os grupos que realizaram as sessões de exercícios foi superior ao da sessão controle, tendo o grupo vigoroso apresentado o maior dispêndio acumulado para o período de acompanhamento. Futuros estudos são necessários de modo a investigar a compensação do gasto energético em obesos e não obesos e o efeito de um número maior de sessões de treinamento.
Resumo:
A method for the detection of knock using the sparking plug, and a system which allows the basic nature of the signal from the spark plug to be compared directly with that from an accelerometer are described. Results are presented for a range of engine speeds which highlight the problems and benefits of each sensing technique.
Resumo:
A method for the detection of knock using the sparking plug, and a system which allows the basic nature of the signal from the spark plug to be compared directly with that from an accelerometer are described. Results are presented for a range of engine speeds which highlight the problems and benefits of each sensing technique.
Resumo:
Measurement of acceleration in dynamic tests is carried out routinely, and in most cases, piezoelectric accelerometers are used at present. However, a new class of instruments based on MEMS technology have become available and are gaining use in many applications due to their small size, low mass and low-cost. This paper describes a centrifuge lateral spreading experiment in which MEMS and piezoelectric accelerometers were placed at similar depths. Good agreement was obtained when the instruments were located in dense sands, but significant differences were observed in loose, liquefiable soils. It was found that the performance of the piezoelectric accelerometer is poor at low frequency, and that the relative phase difference between the piezoelectric and MEMS accelerometer varies significantly at low frequency. © 2010 Taylor & Francis Group, London.
Resumo:
Direct air-sea flux measurements were made on RN Kexue #1 at 40 degrees S, 156 degrees E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-alpha hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme, There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results, Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heal flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.
Resumo:
首先提出了一种新的基于卡尔曼滤波及牛顿预测的角加速度估计方法,在已知电机驱动系统位置信息的情况下,利用卡尔曼滤波实时估计系统的角加速度;同时采用牛顿预测方法解决估计算法的滞后问题,进一步提高了估计加速度的响应频带.以此为基础,本文进一步分析了利用估计加速度进行反馈控制以增强系统对外扰动的鲁棒性问题,提出了加速度反馈控制策略的设计准则并分析了稳定性.在一个直接驱动机器人关节上针对上述加速度估计及控制方法进行了实验研究:将估计加速度的实验结果与实测加速度(利用加速度计)的实验结果进行了比较分析,从而定量地揭示出估计加速度及其反馈控制在实际系统中的可行性及有效性.
Resumo:
轮式移动宜人机器人项目研究的主要目的是开发自主式仿人机器人样机 ,探索先进的机器人理论和技术。轮式移动宜人机器人由正交轮式移动平台、腰部、躯干及头部和双臂组成 ,共 2 1个自由度。整体结构包括 :电源系统、机械系统、控制系统和传感系统。电源系统采用车载电池供电。机械系统包括变刚度结构 ,提高了机器人与人交互作业的安全性。控制系统分为中央协调层和执行层结构。传感系统主要实现关节位置检测、姿态检测、力检测和视觉。文章讨论了此机器人的研究进展。
Resumo:
介绍一种基于水下机器人常规液压收放绞车的主动升沉补偿系统,利用加速度传感器获得母船的升沉运动信号,控制绞车的运转来降低母船的升沉运动对水下机器人的影响。通过理论计算建立主动升沉补偿系统的数学模型,仿真分析绞车运动对水下机器人升沉运动的补偿效果,并利用主动升沉补偿系统实验台验证基于常规液压收放绞车的主动升沉补偿方案的可行性。
Resumo:
以利用线加速度传感器实际测量转动关节的加速度为基础 ,分析了机器人关节加速度反馈控制的开环模型 ,以及影响其闭环稳定性的主要因素 ;提出了闭环控制策略的设计准则 .在一台三自由度直接驱动机器人上的实验结果证明了该文分析的正确性 ,与不具备加速度反馈控制时的实验结果相比较 ,显示出这种方法的有效性
Resumo:
为工业机器人提出了一种最优学习控制法。这种控制法用加速度误差校正驱动器运动。并提出了一种基于几何级数的极限条件估计学习控制过程收敛条件的理论方法。所提出学习控制法的有效性通过PUMA562机器人的计算机仿真结果得到了证实。
Resumo:
Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Engenharia Informática, ramo de Computação Móvel
Resumo:
A wearable WIMU (Wireless Inertial Measurement Unit) [1] system for sports applications based on Tyndall's 25mm mote technology [2] has been developed to identify tennis performance determining factors, giving coaches & players improved feedback [3, 4]. Multiple WIMUs transmit player motion data to a PC/laptop via a receiver unit. Internally the WIMUs consist of: an IMU layer with MEMS based sensors; a microcontroller/transceiver layer; and an interconnect layer with supplemental 70g accelerometers and a lithium-ion battery. Packaging consists of a robust ABS plastic case with internal padding, a power switch, battery charging port and status LED with Velcro-elastic straps that are used to attach the device to the player. This offers protection from impact, sweat, and movement of sensors which could cause degradation in device performance. In addition, an important requirement for this device is that it needs to be lightweight and comfortable to wear. Calibration ensures that misalignment of the accelerometer and magnetometer axes are accounted for, allowing more accurate measurements to be made.
Resumo:
A novel miniaturised system for measurement of the in-flight characteristics of an arrow is introduced in this paper. The system allows the user to measure in-flight parameters such as the arrow’s speed, kinetic energy and momentum, arrow drag and vibrations of the arrow shaft. The system consists of electronics, namely a three axis accelerometer, shock switch, microcontroller and EEPROM memory embedded in the arrow tip. The system also includes a docking station for download and processing of in-flight ballistic data from the tip to provide the measured values. With this system, a user can evaluate and optimize their archery equipment setup based on measured ballistic values. Recent test results taken at NIST show the accuracy of the launch velocities to be within +/- 0.59%, when compared with NIST’s most accurate ballistic chronograph.
Resumo:
The advent of modern wireless technologies has seen a shift in focus towards the design and development of educational systems for deployment through mobile devices. The use of mobile phones, tablets and Personal Digital Assistants (PDAs) is steadily growing across the educational sector as a whole. Mobile learning (mLearning) systems developed for deployment on such devices hold great significance for the future of education. However, mLearning systems must be built around the particular learner’s needs based on both their motivation to learn and subsequent learning outcomes. This thesis investigates how biometric technologies, in particular accelerometer and eye-tracking technologies, could effectively be employed within the development of mobile learning systems to facilitate the needs of individual learners. The creation of personalised learning environments must enable the achievement of improved learning outcomes for users, particularly at an individual level. Therefore consideration is given to individual learning-style differences within the electronic learning (eLearning) space. The overall area of eLearning is considered and areas such as biometric technology and educational psychology are explored for the development of personalised educational systems. This thesis explains the basis of the author’s hypotheses and presents the results of several studies carried out throughout the PhD research period. These results show that both accelerometer and eye-tracking technologies can be employed as an Human Computer Interaction (HCI) method in the detection of student learning-styles to facilitate the provision of automatically adapted eLearning spaces. Finally the author provides recommendations for developers in the creation of adaptive mobile learning systems through the employment of biometric technology as a user interaction tool within mLearning applications. Further research paths are identified and a roadmap for future of research in this area is defined.