973 resultados para Absorption cross sections.
Resumo:
Mode of access: Internet.
Resumo:
"Reactor technology- - TID-4500."
Resumo:
"For the U.S. Army Chemical Corps Nuclear Defense Laboratory"--Fore.
Resumo:
"Physics; Reactor technology--TID-4500, 36th ed."
Resumo:
Pencil on tracing paper; plan, 4 sections of pond depicted in RIP4;; signed; 90 x 67 cm.; Scale: 1" = 10' [from photographic copy by Lance Burgharrdt]
Resumo:
sup. 1. January to July 1950 -- sup. 2. July 1950 to January 1951 -- sup. 3. January to July 1951.
Resumo:
The kaon electroproduction reaction H(e, e ′K+)Λ was studied as a function of the four momentum transfer, Q2, for different values of the virtual photon polarization parameter. Electrons and kaons were detected in coincidence in two High Resolution Spectrometers (HRS) at Jefferson Lab. Data were taken at electron beam energies ranging from 3.4006 to 5.7544 GeV. The kaons were identified using combined time of flight information and two Aerogel Čerenkov detectors used for particle identification. For different values of Q2 ranging from 1.90 to 2.35 GeV/c2 the center of mass cross sections for the Λ hyperon were determined for 20 kinematics and the longitudinal, σ L, and transverse, σT, terms were separated using the Rosenbluth separation technique. ^ Comparisons between available models and data have been studied. The comparison supports the t-channel dominance behavior for kaon electroproduction. All models seem to underpredict the transverse cross section. An estimate of the kaon form factor has been explored by determining the sensitivity of the separated cross sections to variations of the kaon EM form factor. From comparison between models and data we can conclude that interpreting the data using the Regge model is quite sensitive to a particular choice for the EM form factors. The data from the E98-108 experiment extends the range of the available kaon electroproduction cross section data to an unexplored region of Q2 where no separations have ever been performed. ^
Resumo:
SuperScaling model (SuSA) predictions to neutrino-induced charged-current pi(+) production in the Delta-resonance region are explored under MiniBooNE experimental conditions. The SuSA charged-current pi(+) results are in good agreement with data on neutrino flux-averaged double-differential cross sections. The SuSA model for quasielastic scattering and its extension to the pion production region are used for predictions of charged-current inclusive neutrino-nucleus cross sections. Results are also compared with the T2K experimental data for inclusive scattering.
Resumo:
A measurement of the production cross sections of top quark pairs in association with a W or Z boson is presented. The measurement uses 20.3 fb−1 of data from proton-proton collisions at √s = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. Four different final states are considered: two opposite-sign leptons, two same-sign leptons, three leptons, and four leptons. The t t̅ W and t t̅ Z cross sections are simultaneously extracted using a maximum likelihood fit over all the final states. The t t̅ Z cross section is measured to be 176+58−52 fb, corresponding to a signal significance of 4.2σ. The t t̅ W cross section is measured to be 369+100−91 fb, corresponding to a signal significance of 5.0σ. The results are consistent with next-to-leading-order calculations for the tt̅W and tt̅Z processes.
Resumo:
New absolute cross sections for dissociative electron attachment to HCCCN (cyanoacetylene or propiolonitrile) in the range of 0-10 eV electron energy are presented here, which have been determined from a new analysis of previously reported data (Graupner et al 2006 New J. Phys. 8 117). The highest cross sections are observed for the formation of CN- at 5.3 eV and CCCN- at 5.1 eV; approximately 0.06 Å2 and 0.05 Å2 respectively. As part of the re-analysis, it was necessary to determine absolute cross sections for electron-impact ionization of HCCCN with the binary-encounter Bethe method. These electron-impact ionization absolute cross sections for HCCCN are also presented here; the maximum value was found to be ∼6.6 Å2 at ∼80 eV.