964 resultados para AXIALLY DEFORMED-NUCLEI
Resumo:
The nearest-neighbor spacing distributions proposed by four models, namely, the Berry-Robnik, Caurier-Grammaticos-Ramani, Lenz-Haake, and the deformed Gaussian orthogonal ensemble, as well as the ansatz by Brody, are applied to the transition between chaos and order that occurs in the isotropic quartic oscillator. The advantages and disadvantages of these five descriptions are discussed. In addition, the results of a simple extension of the expression for the Dyson-Mehta statistic Δ3 are compared with those of a more popular one, usually associated with the Berry-Robnik formalism. ©1999 The American Physical Society.
Resumo:
It is shown that three-body non-Borromean halo nuclei like 12Be, 18C, 20C, considered as neutron-neutron-core systems, have p-wave virtual states with energy of about 1.7 times the corresponding neutron-core binding energy. We use a renormalizable model that guarantees the general validity of our results in the context of short range interactions.
Resumo:
In the present work, nano-sized magnetic nuclei of Co have been electrodeposited onto p-Si (111). The deposition follows a mechanism of progressive nucleation and growth controlled by diffusion. MFM studies showed that the transition between magnetic domain states is strongly dependent on the size and shape of the nuclei. A critical height h0 is defined below which the nuclei presented always a single-domain configuration. The limiting lower boundary for the single-domain state calculated from the theory is quantitatively coincident with the experimental results. © 2004 Elsevier B.V. All rights reserved.
Resumo:
For light exotic nuclei modeled as two neutrons n and a core A, we report results for the two-neutron correlation functions and also for the mean-square radii, considering a universal scaling function. The results of our calculations for the neutron-neutron correlation functions are qualitatively consistent with recent data obtained for 11Li and 14Be nuclei. The root-mean-square distance in the halo of such nuclei are also consistent with data, which means that the neutrons of the halo have a large probability to be found outside the interaction range. Therefore the low-energy properties of these halo neutrons are, to a large extend, model independent as long as few physical input scales are fixed. The model is restricted to s-wave subsystems, with small energies for the bound or virtual states. For the radii we are also shown results for the 6He and 20C. All the interaction effects, as higher partial wave in the interaction and/or Pauli blocking effect are, to some extend, included in our model, as long as the three-body binding energy is supplied. © 2005 American Institute of Physics.
Resumo:
In this work we introduce a mapping between the so-called deformed hyperbolic potentials, which are presenting a continuous interest in the last few years, and the corresponding nondeformed ones. As a consequence, we conclude that these deformed potentials do not pertain to a new class of exactly solvable potentials, but to the same one of the corresponding nondeformed ones. Notwithstanding, we can reinterpret this type of deformation as a kind of symmetry of the nondeformed potentials. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The transition levels at the top of the two Np237 fission barriers were obtained for the first time by means of the so-called semimicroscopic combined method, which we have developed and implemented. To overcome the difficulties in dealing with large nuclear deformations, we used our developed BARRIER code, which calculates single-particle spectra in a deformed Woods-Saxon potential using a coordinate system based on Cassini ovaloids as nuclear shape parametrization. The results enabled us to describe the experimentally observed near-barrier photofission cross-section structures for Np237, as well as a subbarrier shelf, the latter being consistently interpreted in terms of the accumulation of levels at the top of the inner and outer double fission barrier of Np237. © 2006 The American Physical Society.
Resumo:
We analyze the surface geometry of the spherical even-even Ca, Ni, Sn and Pb nuclei using two approaches: The relativistic Dirac-Hartree-Bogoliubov one with several parameter sets and the non-relativistic Hartree-Fock-Bogoliubov one with the Gogny force. The proton and neutron density distributions are fitted to two-parameter Fermi density distributions to obtain the half-density radii and diffuseness parameters. Those parameters allow us to determine the nature of the neutron skins predicted by the models. The calculations are compared with existing experimental data. © 2007 American Institute of Physics.
Resumo:
We report a renormalized zero-range interaction approach to estimate the size of generic weakly bound three-body systems where two particles are identical. We present results for the neutron-neutron root-mean-square distances of the halo nuclei 6He, 11Li, 14Be and 20C, where the systems are taken as two halo neutrons with an inert point-like core. We also report an approach to obtain the neutron-neutron correlation function in halo nuclei. In this case, our results suggest a review of the corresponding experimental data analysis. © 2007 American Institute of Physics.
Resumo:
We present results for spatial distributions of weakly-bound three-body systems, derived from a universal scaling function that depends on the mass ratio of the particles, as well as on the nature of the subsystems. © 2007 American Institute of Physics.
Resumo:
In this contribution I provide an overview of our group papers involving universalities in light exotic nuclei. It is also made a connection of these systems with some weakly bound ultracold molecules. © 2010 American Institute of Physics.
Resumo:
Within general characteristics of low-energy few-body systems, we revise some well-known correlations found in nuclear physics, and the properties of low-mass halo nuclei in a three-body neutron-neutron-core model. In this context, near the critical conditions for the occurrence of an Efimov state, we report some results obtained for the neutron- 19C elastic scattering. © 2010 American Institute of Physics.
Resumo:
A nonlinear spring element of a vibration isolator should ideally possess high static and low dynamic stiffness. A buckled beam may be a good candidate to fulfil this requirement provided its internal resonance frequencies are high enough to achieve a wide frequency range of isolation. If a straight beam is used, there is a singularity in the force-displacement characteristic. To smooth this characteristic and eliminate the singularity at the buckling point, beams with initial constant curvature along their length are investigated here as an alternative to the buckled straight beam. Their force displacement characteristics are compared with different initial curvature and with a straight buckled beam. The minimum achievable dynamic stiffness with its corresponding static stiffness is compared for different initial curvatures. A case study is considered where the beams are optimized to isolate a one kilogram mass and to achieve a natural frequency of 1 Hz, considering small amplitudes of vibration. Resonance frequencies of the optimized beams for different curvature are presented. It is shown that an order of magnitude reduction in stiffness compared with a linear spring is achievable, while the internal resonance frequencies of the curved beam are high enough to achieve an acceptable frequency range of isolation.
Resumo:
This paper presents a novel segmentation method for cuboidal cell nuclei in images of prostate tissue stained with hematoxylin and eosin. The proposed method allows segmenting normal, hyperplastic and cancerous prostate images in three steps: pre-processing, segmentation of cuboidal cell nuclei and post-processing. The pre-processing step consists of applying contrast stretching to the red (R) channel to highlight the contrast of cuboidal cell nuclei. The aim of the second step is to apply global thresholding based on minimum cross entropy to generate a binary image with candidate regions for cuboidal cell nuclei. In the post-processing step, false positives are removed using the connected component method. The proposed segmentation method was applied to an image bank with 105 samples and measures of sensitivity, specificity and accuracy were compared with those provided by other segmentation approaches available in the specialized literature. The results are promising and demonstrate that the proposed method allows the segmentation of cuboidal cell nuclei with a mean accuracy of 97%. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper proposes a method for segmentation of cell nuclei regions in epithelium of prostate glands. This structure provides information to diagnosis and prognosis of prostate cancer. In the initial step, the contrast stretching technique was applied in image in order to improve the contrast between regions of interest and other regions. After, the global thresholding technique was applied and the value of threshold was defined empirically. Finally, the false positive regions were removed using the connected components technique. The performance of the proposed method was compared with the Otsu technique and statistical measures of accuracy were calculated based on reference images (gold standard). The result of the mean value of accuracy of proposed method was 93% ± 0.07.