926 resultados para ATOMIC-FORCE MICROSCOPY
Resumo:
Formation of stable thin films of mixed xyloglucan (XG) and alginate (ALG) onto Si/SiO2 wafers was achieved under pH 11.6, 50 mM CaCl2, and at 70 degrees C. XG-ALG films presented mean thickness of (16 +/- 2) nun and globules rich surface, as evidenced by means of ellipsometry and atomic force microscopy (AFM), respectively. The adsorption of two glucose/mannose-binding seed (Canavalia ensiformis and Dioclea altissima) lectins, coded here as ConA and DAlt, onto XG-ALG surfaces took place under pH 5. Under this condition both lectins present positive net charge. ConA and DAIt adsorbed irreversibly onto XG-ALG forming homogenous monolayers similar to(4 +/- 1)nm thick. Lectins adsorption was mainly driven by electrostatic interaction between lectins positively charged residues and carboxylated (negatively charged) ALG groups. Adhesion of four serotypes of dengue virus, DENV (1-4), particles to XG-ALG surfaces were observed by ellipsometry and AFM. The attachment of dengue particles onto XG-ALG films might be mediated by (i) H bonding between E protein (located at virus particle surface) polar residues and hydroxyl groups present on XG-ALG surfaces and (ii) electrostatic interaction between E protein positively charged residues and ALG carboxylic groups. DENV-4 serotype presented the weakest adsorption onto XG-ALG surfaces, indicating that E protein on DENV-4 surface presents net charge (amino acid sequence) different from E proteins of other serotypes. All four DENV particles serotypes adsorbed similarly onto lectin films adsorbed. Nevertheless, the addition of 0.005 mol/L of mannose prevented dengue particles from adsorbing onto lectin films. XG-ALG and lectin layers serve as potential materials for the development of diagnostic methods for dengue. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The interaction between dengue virus particles (DENV), sedimentation hemagglutinin particles (SHA), dengue virus envelope protein (Eprot), and solid surfaces was investigated by means of ellipsometry and atomic force microscopy (AFM). The surfaces chosen are bare Si/SiO(2) wafers and Si/SiO(2) wafers covered with concanavalin A (ConA), jacalin (Jac), polystyrene (PS), or poly(styrene sulfonate) (PSS) films. Adsorption experiments at pH 7.2 and pH 3 onto all surfaces revealed that (i) adsorption of DENV particles took place only onto ConA under pH 7.2, because of specific recognition between glycans on DENV surface and ConA binding site; (ii) DENV particles did not attach to any of the surfaces at pH 3, suggesting the presence of positive charges on DENV surface at this pH, which repel the positively charged lectin surfaces; (iii) SHA particles are positively charged at pH 7.2 and pH 3 because they adhered to negatively charged surfaces at pH 7.2 and repelled positively charged layers at pH 3; and (iv) SHA particles carry polar groups on the surface because they attached to silanol surfaces at pH 3 and avoided hydrophobic PS films at pH 3 and pH 7.2. The adsorption behavior of Eprot at pH 7.2 revealed affinity for ConA > Jac > PSS > PS approximate to bare Si/SiO(2) layers. These findings indicate that selectivity of the Eprot adsorption is higher when it is part of virus structure than when it is free in solution. The correlation between surface energy values determined by means of contact angle measurements and DENV, SHA, or Eprot adsorption behavior was used to understand the intermolecular forces at the interfaces. A direct correlation was not found because the contributions from surface energy were probably surpassed by specific contributions.
Resumo:
BACKGROUND AND PURPOSE The P2X receptor family consists of seven subunit types - P2X1-P2X7. All but P2X6 are able to assemble as homotrimers. In addition, various subunit permutations have been reported to form heterotrimers. Evidence for heterotrimer formation includes co-localization, co-immunoprecipitation and the generation of receptors with novel functional properties; however, direct structural evidence for heteromer formation, such as chemical cross-linking and single-molecule imaging, is available in only a few cases. Here we examined the nature of the interaction between two pairs of subunits - P2X2 and P2X4, and P2X4 and P2X7. EXPERIMENTAL APPROACH We used several experimental approaches, including in situ proximity ligation, co-immunoprecipitation, co-isolation on affinity beads, chemical cross-linking and atomic force microscopy (AFM) imaging. KEY RESULTS Both pairs of subunits co-localize upon co-transfection, interact intimately within cells, and can be co-immunoprecipitated and co-isolated from cell extracts. Despite this, chemical cross-linking failed to show evidence for heteromer formation. AFM imaging of isolated receptors showed that all three subunits had the propensity to form receptor dimers. This self-association is likely to account for the observed close interaction between the subunit pairs, in the absence of true heteromer formation. CONCLUSIONS AND IMPLICATIONS We conclude that both pairs of receptors interact in the form of distinct homomers. We urge caution in the interpretation of biochemical evidence indicating heteromer formation in other cases.
Resumo:
Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-cans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern, Multilayer films of the acids show only a single-step order-disorder transition at the malting point, This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached, Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed, In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
A mudança no mercado global do petróleo nos últimos anos, com o declínio das reservas de óleo leve, têm forçado a busca por novos campos petrolíferos em ambientes mais remotos, como nos campos localizados na camada pré-sal, e a exploração de óleos pesados que possuem elevado teor de ácidos naftênicos. Isso acarreta em grandes desafios para a previsão do desempenho de materiais frente às novas condições ambientais em que estão inseridos. No presente trabalho, o comportamento da corrosão do aço carbono AISI 1010 e do aço inoxidável AISI 316L foi estudado em soluções aquosas com elevado teor de cloreto e em solução de ácido naftênico ciclopentanóico a fim de ter melhor entendimento da ação dessas espécies no processo de corrosão e simular a corrosão pela água de produção na indústria petrolífera. Foram aplicadas as técnicas de potencial de circuito aberto, polarização potenciodinâmica, voltametria cíclica, espectroscopia de impedância eletroquímica, espectroscopia Raman, microscopia eletrônica de varredura e microscopia de força atômica, usadas, em cada caso, de acordo com a conveniência. O aumento da [Cl-] na faixa de 1,2–2,8 mol.L-1 não altera os processos catódicos e anódicos perto do Ecorr para os aços AISI 1010 e AISI 316L. Em condições de sobrepotenciais afastados do Ecorr, o aumento de [Cl-] aumenta os processos oxidativos de corrosão, o que é expresso pelas maiores densidades de corrente e carga anódica e aumento da perda de massa sofrida pelos eletrodos de ambos os aços. Portanto, os danos da corrosão são mais intensos quando se aumenta a [Cl-]. O aço AISI 1010 é ativo nas soluções de NaCl e a corrosão se propaga livremente de forma uniforme. Para o aço AISI 316L, uma ampla faixa de passividade pode ser vista nas soluções de NaCl; no Epit ocorre a ruptura do filme passivo e o crescimento de pites estáveis. Após 24 h de imersão em soluções de sulfato de sódio (branco) e de ácido naftênico ciclopentanóico ocorre crescimento de filme de óxido e as fases α-Fe2O3, Fe3O4 e δ-FeO(OH) foram identificadas nos espécimes de aço AISI 1010 e Fe3O4 foi identificado nos defeitos do filme prévio presente na superfície do aço AISI 316L. Os filmes formados em solução de ácido ciclopentanóico possuem menor resistência à polarização, maior rugosidade e maior taxa de corrosão quando comparado aos filmes crescidos na solução branco, para ambos os aços. A presença do ácido naftênico muda a forma como a reação de corrosão se procede e contribui para o aumento da corrosão. A corrosão naftênica foi mais pronunciada no aço carbono porque a presença dos elementos de liga no aço inox reduzem o número de sítios ativos ricos em Fe e tornam menos oportuna a ligação do Fe com o naftenato.
Resumo:
Four cationic ruthenium(II) complexes with the formula [Ru(eta(5)-C5H5)(PPh3)(2)](+), with L = 5-phenyl-1H-tetrazole (TzH) 1, imidazole (ImH) 2, benzo[1,2-b; 4,3-b'] dithio-phen-2-carbonitrile (Bzt) 3, and [5-(2-thiophen-2-yl)-vinyl]-thiophene-2-carbonitrile] (Tvt) 4 were prepared and characterized in view to evaluate their potentialities as antitumor agents. Studies by Circular Dichroism indicated changes in the secondary structure of ct-DNA. Changes in the tertiary structure of pBR322 plasmid DNA were also observed in gel electrophoresis experiment and the images obtained by atomic force microscopy (AFM) suggest strong interaction with pBR322 plasmid DNA; the observed decreasing of the viscosity with time indicates that the complexes do not intercalate between DNA base pairs. Compounds 1, 2, and 3 showed much higher cytotoxicity than the cisplatin against human leukaemia cancer cells (HL-60 cells).
Resumo:
Four ruthenium(II) complexes with the formula [Ru(eta(5)-C(5)H(5))(PP)L][CF(3)SO(3)], being (PP = two triphenylphosphine molecules), L = 1-benzylimidazole, 1; (PP = two triphenylphosphine molecules), L = 2,2'bipyridine, 2; (PP = two triphenylphosphine molecules), L = 4-Methylpyridine, 3; (PP = 1,2-bis(diphenylphosphine) ethane), L = 4-Methylpyridine, 4, were prepared, in view to evaluate their potentialities as antitumor agents. The compounds were completely characterized by NMR spectroscopy and their crystal and molecular structures were determined by X-ray diffraction. Electrochemical studies were carried out giving for all the compounds quasi-reversible processes. The images obtained by atomic force microscopy (AFM) suggest interaction with pBR322 plasmid DNA. Measurements of the viscosity of solutions of free DNA and DNA incubated with different concentrations of the compounds confirmed this interaction. The cytotoxicity of compounds 1234 was much higher than that of cisplatin against human leukemia cancer cells (HL-60 cells). IC(50) values for all the compounds are in the range of submicromolar amounts. Apoptotic death percentage was also studied resulting similar than that of cisplatin. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Using optical microscopy, phase shifting interferometry, and atomic force microscopy, we characterize the undulated structures which appear in the meniscus of freestanding ferroelectric smectic-C* films. We demonstrate that these periodic structures correspond to undulations of the smectic-air interface. The resulting striped pattern disappears in the untilted smectic-A phase. The modulation amplitude and wavelength of the instability both depend on meniscus thickness. We study the temperature evolution and propose a model that qualitatively accounts for the observations.
Resumo:
We describe a novel, low-cost and low-tech method for the fabrication of elastomeric Janus particles with diameters ranging from micrometers to millimeters. This consists of UV-irradiating soft urethane/urea elastomer spheres, which are then extracted in toluene and dried. The spheres are thus composed of a single material: no coating or film deposition steps are required. Furthermore, the whole procedure is carried out at ambient temperature and pressure. Long, labyrinthine corrugations ("wrinkles") appear on the irradiated portions of the particles' surfaces, the spatial periodicity of which can be controlled by varying the sizes of particles. The asymmetric morphology of the resulting Janus particles has been confirmed by scanning electron microscopy, atomic force microscopy, and optical microscopy. We have also established that the spheres behave elastically by performing bouncing tests with dried and swollen spheres. Results can be interpreted by assuming that each sphere consists of a thin, stiff surface layer ("skin") lying atop a thicker, softer substrate ("bulk"). The skin's higher stiffness is hypothesized to result from the more extensive cross-linking of the polymer chains located near the surface by the UV radiation. Textures then arise from competition between the effects of bending the skin and compressing the bulk, as the solvent evaporates and the sphere shrinks.
Resumo:
Shear transparent cellulose free-standing thin films can develop iridescence similar to that found in petals of the tulip Queen of the Night. The iridescence of the film arises from the modulation of the surface into bands periodically spread perpendicular to the shear direction. Small amounts of nanocrystalline cellulose (NCC) rods in the precursor liquid-crystalline solutions do not disturb the optical properties of the solutions but enhance the mechanical characteristics of the films and affects their iridescence. Smaller bands periodicity, not affected by the NCC rods, slightly deviated from the shear direction is also observed. NCCs are crucial to tune and understand the film's surface features formation. Our findings could lead to new materials for application in soft reflective screens and devices.
Resumo:
The cytosolic chaperonin CCT is a heterooligomeric complex of about 900 kDa that mediates the folding of cytoskeletal proteins. We observed by indirect immunofluorescence that the Tetrahymena TpCCTalpha, TpCCTdelta, TpCCTepsilon, and TpCCTeta-subunits colocalize with tubulin in cilia, basal bodies, oral apparatus, and contractile vacuole pores. TpCCT-subunits localization was affected during reciliation. These findings combined with atomic force microscopy measurements in reciliating cells indicate that these proteins play a role during cilia biogenesis related to microtubule nucleation, tubulin transport, and/or axoneme assembly. The TpCCT-subunits were also found to be associated with cortex and cytoplasmic microtubules suggesting that they can act as microtubule-associated proteins. The TpCCTdelta being the only subunit found associated with the macronuclear envelope indicates that it has functions outside of the 900 kDa complex. Tetrahymena cytoplasm contains granular/globular-structures of TpCCT-subunits in close association with microtubule arrays. Studies of reciliation and with cycloheximide suggest that these structures may be sites of translation and folding. Combined biochemical techniques revealed that reciliation affects the oligomeric state of TpCCT-subunits being tubulin preferentially associated with smaller CCT oligomeric species in early stages of reciliation. Collectively, these findings indicate that the oligomeric state of CCT-subunits reflects the translation capacity of the cell and microtubules integrity.
Resumo:
Helically twisted fibers can be produced by electrospinning liquid-crystalline cellulose solutions. Fiber topographies are studied by atomic force microscopy, scanning electron microscopy (see figure) and polarized optical microscopy. The fibers have a nearly universal pitch-to-diameter ratio and comprise both right- and left-handed helices.
Resumo:
A celulose é o polímero renovável mais abundante do mundo. É conhecido pela sua excelente biocompatibilidade, propriedades térmicas e mecânicas. A celulose assim como os polipéptideos e o ADN, pertence a uma família de moléculas orgânicas que dão origem à formação de fases líquidas cristalinas (LCs) colestéricas. A Passiflora Edulis, tal como outras plantas trepadeiras, possui longas e flexíveis gavinhas que permitem à planta encontrar um suporte para se fixar. As gavinhas podem assumir a forma de espirais ou de hélices consoante sejam sustentadas por apenas uma ou por ambas as extremidades. As hélices apresentam muitas vezes duas porções helicoidais, uma esquerda e outra direita, separadas por um segmento recto denominado perversão. Este comportamento é consequência da curvatura intrínseca das gavinhas produzidas pela planta trepadeira. O mesmo comportamento pode ser observado em micro e nanofibras celulósicas fabricadas a partir de soluções líquido-cristalinas, numa escala três a quatro ordens de grandeza inferior à das gavinhas. Este facto sugere que o modelo físico utilizado tenha invariância de escala. Neste trabalho é feito o estudo de fibras e jactos que imitam as estruturas helicoidais apresentadas pelas gavinhas das plantas trepadeiras. As fibras e jactos são produzidos a partir de soluções líquidas cristalinas celulósicas. De modo a determinar as características morfológicas e estruturais, que contribuem para a curvatura das fibras, foram utilizadas técnicas de imagem por ressonância magnética (MRI), microscopia óptica com luz polarisada (MOP), microscopia electrónica de varrimento (SEM) e microscopia de força atómica (AFM) . A variação da forma das estruturas helicoidais com a temperatura parece ser relevante para o fabrico de membranas não tecidas para aplicação em sensores termo-mecânicos.
Resumo:
Epigallocatechin gallate (EGCG), an antioxidant with several pharmacological and biological activities, was encapsulated in carbohydrate particles to preserve its antioxidant properties and improve its bioavailability. Gum arabic–maltodextrin particles loaded with EGCG (EGCG/P) were successfully produced by homogenization and spray-drying, with an EGCG loading efficiency of 96 ± 3%. Spray-dried particles are spherical or corrugated and polydisperse with diameters less than 20 m. The particles in aqueous suspension revealed two main populations, with mean average diameters of 40 nm and 400 nm. Attenuated total reflection-infrared spectroscopy (ATR-IR) confirmed that EGCG was incorporated in the carbohydrate matrix by intermolecular interactions, maintaining its chemical integrity. Atomic force microscopy imaging proved the particle spherical shape and size. The present study demonstrates that the carbohydrate matrix is able to preserve EGCG antioxidant properties, as proof of concept to be used as polymeric drug carrier.
Resumo:
In the last decades TiAlN coatings deposited by PVD techniques have been extensively investigated but, nowadays, their potential development for tribological applications is relatively low. However, new coatings are emerging based on them, trying to improve wear behavior. TiAlSiN thin coatings are now investigated, analyzing if Si introduction increases the wear resistance of PVD films. Attending to the application, several wear test configurations has been recently used by some researchers. In this work, TiAlSiN thin coatings were produced by PVD Unbalanced Magnetron Sputtering technique and they were conveniently characterized using Scanning Electron Microscopy (SEM) provided with Energy Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), Electron Probe Micro-Analyzer (EPMA), Micro Hardness (MH) and Scratch Test Analysis. Properties as morphology, thickness, roughness, chemical composition and structure, hardness and film adhesion to the substrate were investigated. Concerning to wear characterization, two very different ways were chosen: micro-abrasion with ball-on-flat configuration and industrial non-standardized tests based on samples inserted in a feed channel of a selected plastic injection mould working with 30% (wt.) glass fiber reinforced polypropylene. TiAlSiN coatings with a small amount of about 5% (wt.) Si showed a similar wear behavior when compared with TiAlN reported performances, denoting that Si addition does not improve the wear performance of the TiAlN coatings in these wear test conditions.