741 resultados para ASPERGILLUS-TERREUS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The synthesis of polygalacturonases (PG) is known to be influenced by Aspergillus growth conditions, namely, environmental factors and pectin content in the cultivation medium containing a mixed carbon source. Optimal conditions were attained at a temperature of 30 A degrees C and an initial pH of 4.5. PG activity (3.29 and 2.48 U/mL) was determined after a two-day culture of Aspergillus sp. HC1 and Aspergillus sp. CC1, respectively, in a basic medium containing 2% citrus pectin as the sole carbon source. The addition of glucose (2% w/v) to the basic medium led to a 2-fold increase in PG production. However, enzyme synthesis was repressed when a higher concentration of glucose was used in the medium containing the mixed carbon source. Spores from the two fungi were immobilized in a 3% Ca-alginate system and the mechanical strength of the gel beads allowed the use of this process system 6-fold longer (288 h) than the free culture. In the Aspergillus sp. CC1 immobilized system, PG production increased nearly 10-fold in the medium with 2% glucose added (5.95 U/mL) in comparison to the medium without sugar (0.55 U/mL). The results demonstrate that a different response in activity was produced by free and entrapped spore systems. PG production remained approximately constant throughout the six 48 h cycles in the medium containing citrus pectin (2% w/v) as the sole carbon source.
Resumo:
Co-inoculation of the fungus Aspergillus niger and the bacterium Burkholderia cepacia was undertaken to understand the interaction between different species of phosphate-solubilizing microorganisms (PSM). PSM were inoculated in a single or mixed (A. nigerB.similar to cepacia) culture. During 9 similar to days of incubation, microbial biomass was enhanced, accompanied with increases in the levels of soluble phosphate and titratable acidity, as well as increased acid phosphatase activity. Production of acids and levels of phosphate solubilization were greater in the co-culture of A.similar to nigerB.similar to cepacia than in the single culture. The quantity of phosphate solubilized by the co-culture ranged from 40.51 +/- 0.60 to 1103.64 +/- 1.21 similar to mu g similar to PO4 3-similar to mL-1 and was 922% higher than single cultures. pH of the medium dropped from 7.0 to 3.0 in the A.similar to niger culture, 3.1 in the co-culture, and 4.2 in the B.similar to cepacia culture. on the third day of postinoculation, acid production by the co-culture (mean 5.40 +/- 0.31 similar to mg NaOH mL-1) was 1990% greater than single cultures. Glucose concentration decreased almost completely (9799% of the starting concentration) by the ninth day of the incubation. These results show remarkable synergism by the co-culture in comparison with single cultures in the solubility of CaHPO4 under in vitro conditions. This synergy between microorganisms can be used in poor available phosphate soils to enhance phosphate solubilization.
Resumo:
In order to determine conditions that may provide greater solubilization of insouluble phosphate, the fungus Aspergillus niger was grown in a stationary culture containing modified citrate medium supplemented with 800 mg fluorapatite per litre. Solubilization of insouluble phosphate increased with fungal growth, reaching a maximum after 11 days of culture. Soluble phosphate levels were correlated with pH of the culture medium but not with titratable acidity values, probably due to the metabolic activity of the fungus resulting from consumption of sugar in the culture medium. Fructose, glucose, xylose, and sucrose were the carbohydrates that favoured fluorapatite solubilization the most when compared with galactose and maltose. Although increasing fructose concentrations in the culture medium favoured mycelial growth, increased total acidity and a fall in pH, soluble phosphate levels were reduced, probably owing to consumption by the rapidly growing fungus. Among the nitrogen sources tested, ammonium salts favoured the production of larger amounts of soluble phosphate than organic nitrogen (peptone or urea) or nitrate, corresponding to the lowest pH and highest titratable acidity values obtained. © 1988 Springer-Verlag.
Resumo:
Fluorapatite solubilization by Aspergillus niger using diluted vinasse at a relative density of 45° Brix may be an alternative to the usual processes for obtaining soluble phosphate. After 13 days of culture, a production of 1.2g l-1 soluble phosphate was obtained for 5g l-1 fluorapatite added to the vinasse, as well as production of 11 gl-1 dry mycelial mass and a substantial reduction of the polluting components of the medium, i.e. a 78 and 94% reduction of total and reducing sugars, respectively, and a 48 and 80% reduction of total and soluble solids, respectively. In less diluted medium, increased sugar content led to a greater production of dry mass but also to a reduction of soluble phosphate content. When fluorapatite concentration in vinasse was increased from 5.0 to 7.5 or 10.0 g l-1, soluble phosphate accumulation increased by 0.28 and 0.15 g l-1, respectively. Addition of ammonium nitrate or rotary shaking of the culture mixture did not lead to the production of larger amounts of soluble phosphate than obtained in the absence of these factors. © 1990.
Resumo:
The nihB gene of Aspergillus nidulans was found to confer sensitivity to elevated concentrations of nitrite, compact morphology and absence of conidiation. The nihB locus was allocated to linkage group II and was recessive in heterozygous diploids. When the nihB1 mutant was grown on a mixture of nitrite plus NH4 + its sensitivity to nitrite was unchanged. A possible role for this gene in nitrite transport and/or the maintenance of membrane integrity is discussed. © 1992 Rapid Communications of Oxford Ltd.
Resumo:
Two benomyl-resistant mutants, benD3 tubC41 and benD4 tubC42, of Aspergillus nidulans were isolated after UV treatment. The tubC mutations permitted good conidiation of these strains in culture media containing benomyl and were responsible for increasing their benomyl resistance levels. This implies that β3-tubulin, a product of the tubC gene, in addition to being involved in fungal conidiation, participates in the vegetative growth of the fungus. The tubC gene was located in linkage group I.
Resumo:
Tunicamycin, which inhibits N-glycosylation of proteins, was used as a tool to determine the type of linkage which occurs in glycoprotein antigens of Aspergillus fumigatus. When A. fumigatus extracts were electrophoretically separated and blotted then probed with anti-Aspergillus patients' sera, differences in antigenic profiles were noted when tunicamycin-treated samples were compared with controls. Tunicamycin had no detectable effect on the cellular proteinases of A. fumigatus, most of which are glycosylated. Some enzymatic components were lacking when extracellular proteinases were compared with those of control samples. The major catalase component of A. fumigatus is a concanavalin A (Con A)-binding glycoprotein. In cultures grown in the presence of tunicamycin, partiallydeglycosylated catalase components were obtained which could be distinguished from the native catalase by their altered mobilities in polyacrylamide gels. The effect of deglycosylation on catalase antigens was monitored using an antiserum raised to a ConA-binding fraction of A fumigatus mycelium. These antibodies bound both to the native glycoprotein and the partially deglycosylated material. These latter two were largely unaffected when incubated with an antiserum raised to a non-ConA-binding fraction of A. fumigatus which is essentially carbohydrate free. The ability to produce partially-glycosylated antigens of A. fumigatus offers a model to study the effect of basic structural modifications on both the enzymatic and antigenic activities of these molecules.
Resumo:
Aspergillus niger on paramorphogenic form showed to be efficient adsorbent to reactive azo dye Procion Blue MX-G, where it has obtained rates of colour removal above 99% in acid pH, at 120 minutes of equilibrium time. Temperature did not exert expressive influence in the process, and the applicability of Freundlich's, isotherm suggest the occurrence of various molecules layers of adsorbed dye on the substratum surface.
Resumo:
A simple and easily reproducible method to obtain little fungical pellets from mycelial fractionization, completely under control with respect to development, size and homogeneity without genetic compromise, is described. The method has been successully employed with Aspergillus niger and also showed similar results with Aspergillus oryzae.
Resumo:
The growth and the extracellular amylase production by Aspergillus ochraceus were studied in a stationary culture medium. Maximum growth rate of this fungus was found after 5 days of incubation at 30° C, but maximum amylase production was obtained after 2 days. The highest amylase production were attained with lactose, maltose, xylose and starch as carbon sources. The extracellular amylase production and mycelial growth were influenced by the concentration of starch. Other carbohydrates supported growth but did not induce amylase synthesis and glucose repressed it, indicating catabolite repression in this microorganism. The presence of both mechanisms of induction and repression suggests that at least these multiple forms of regulation are present in A. ochraceus. Of the nitrogen sources tested, casaminoacids, ammonium nitrate and sodium nitrate stimulated the highest yield of amylase. Optimal amylase production was obtained at pH 5.0, but enzyme activity was found only in the 4.0-6.0 pH range. These results were probably due to the inhibitory effect of NH 4 +-N in the culture medium.
Resumo:
A strain of Aspergillus giganteus cultivated in a medium with xylan produced two xylanases (xylanase I and II) which were purified to homogeneity. Their molar mass, estimated by SDS-PAGE, were 21 and 24 kDa, respectively. Both enzymes are glycoproteins with 50°C temperature optimum; optimum pH was 6.0-6.5 for xylanase I and 6.0 for xylanase II. At 50°C xylanase I exhibited higher thermostability than xylanase II. Hg2+, Cu 2+ and SDS were strong inhibitors, 1,4-dithiothreitol stimulated the reaction of both enzymes. Both xylanases are xylan-specific; kinetic parameters indicated higher efficiency in the hydrolysis of oat spelts xylan. In hydrolysis of this substrate, xylotriose, xylotetraose and larger xylooligosaccharides were released and hence the enzymes were classified as endoxylanases.
Resumo:
Two extracellular xylanases produced by the thermotolerant fungus Aspergillus caespitosus grown in sugar cane bagasse were purified and characterized. Estimated molecular masses were 26.3 and 27 kDa (xyl I); 7.7 and 17.7 kDa (xyl II) for gel filtration and SDS-PAGE, respectively. Optimal temperature for both xylanases was 50-55°C. Optimal pH was 6.5-7.0 for xyl I, and 5.5-6.5 for xyl II. The thermostability (T half) at 55°C was 27.3 min (xyl I) and >90 min (xyl II). Xylanase activity was inhibited by several ions. β-mercaptoethanol activated 59 and 102% xyl I and xyl II activities, respectively. These enzymes preferentially hydrolyzed birchwood xylan, and the K m and V max values were 2.5 mg/ml and 1679 U/mg protein (xyl I), and 3.9 mg/ml and 113 U/mg protein (xyl II). The action of both xylanases mainly that of xyl II, on kraft pulp reduced kappa number and increased pulp viscosity. © 2004 Elsevier Ltd. All rights reserved.