936 resultados para ARRAY ILLUMINATOR
Resumo:
The first demonstration of a directly modulated microring laser array is presented for on-off keyed, wavelength- division- multiplexed fiber-optic data transmission. GaInAsP-InP microring resonators oscillating at separate wavelengths in the 1.5-μm band are vertically coupled to a common passive waveguide bus, which is fabricated on the reverse side of the InP membrane. Two microrings defined with radii for a wavelength channel separation of 6 nm have been assessed for both individual and simultaneous operation. Negligible power penalty (<0.2 dB) is observed for wavelength-division-multiplexed operation with and without transmission over a 25-km fiber span in a manner which indicates low crosstalk between the integrated sources. A device area of less than 0.12 mm2 per microring on a common passive bus allows a highly scalable solution for short-reach wavelength-multiplexed links. © 2008 IEEE.
Resumo:
Here we demonstrate that a free-standing carbon nanotube (CNT) array can be used as a large surface area and high porosity 3D platform for molecular imprinted polymer (MIP), especially for surface imprinting. The thickness of polymer grafted around each CNT can be fine-tuned to imprint different sizes of target molecules, and yet it can be thin enough to expose every imprint site to the target molecules in solution without sacrificing the capacity of binding sites. The performance of this new CNT-MIP architecture was first assessed with a caffeine-imprinted polypyrrole (PPy) coating on two types of CNT arrays: sparse and dense CNTs. Real-time pulsed amperometric detection was used to study the rebinding of the caffeine molecules onto these CNT-MIPPy sensors. The dense CNT-MIPPy sensor presented the highest sensitivity, about 15 times better when compared to the conventional thin film, whereas an improvement of 3.6 times was recorded on the sparse CNT. However, due to the small tube-to-tube spacing in the dense CNT array, electrode fouling was observed during the detection of concentrated caffeine in phosphate buffer solution. A new I-V characterization method using pulsed amperometry was introduced to investigate the electrical characterization of these new devices. The resistance value derived from the I-V plot provides insight into the electrical conductivity of the CNT transducer and also the effective surface area for caffeine imprinting.
Resumo:
A novel transparent liquid-crystal-based microlens array has been fabricated using an array of vertically aligned multi-wall carbon nanofibers (MWCNFs) on a quartz substrate and its optical characteristics investigated. Electron beam lithography was used for the catalyst patterning on a quartz substrate to grow the MWCNF array of electrodes. The structure of the electrode array was determined through simulation to achieve the best optical performance. Both the patterned catalyst and growth parameters were optimized for optimal MWCNF properties. We report an in-depth optical characterization of these reconfigurable hybrid liquid crystal and nanofiber microlens arrays.