856 resultados para APICAL MEMBRANE
Resumo:
The aim of this study was to assess the prevalence and risk factors of apical periodontitis in endodontically treated teeth in a selected population of Brazilian adults. A total of 1,372 periapical radiographs of endodontically treated teeth were analyzed based on the quality of root filling, status of coronal restoration and presence of posts associated with apical periodontitis (AP). Data were analyzed statistically using odds ratio, confidence intervals and chi-square test. The prevalence of AP with adequate endodontic treatment was low (16.5%). This percentage dropped to 12.1% in cases with adequate root filling and adequate coronal restoration. Teeth with adequate endodontic treatment and poor coronal restoration had an AP prevalence of 27.9%. AP increased to 71.7% in teeth with poor endodontic treatment associated with poor coronal restoration. When poor endodontic treatment was combined with adequate coronal restoration, AP prevalence was 61.8%. The prevalence of AP was low when associated with high technical quality of root canal treatment. Poor coronal restoration increased the risk of AP even when endodontic treatment was adequate (OR=2.80; 95%CI=1.87-4.22). The presence of intracanal posts had no influence on AP prevalence.
Resumo:
This study investigated the influence of cervical preflaring with different rotary instruments on determination of the initial apical file (IAF) in mesiobuccal roots of mandibular molars. Fifty human mandibular molars whose mesial roots presented two clearly separated apical foramens (mesiobuccal and mesiolingual) were used. After standard access opening and removal of pulp tissue, the working length (WL) was determined at 1 mm short of the root apex. Five groups (n=10) were formed at random, according to the type of instrument used for cervical preflaring. In group 1, the size of the IAF was determined without preflaring of the cervical and middle root canal thirds. In groups 2 to 5, preflaring was performed with Gates-Glidden drills, ProTaper instruments, EndoFlare instruments and LA Axxes burs, respectively. Canals were sized manually with K-files, starting with size 08 K-files, inserted passively up to the WL. File sizes were increased until a binding sensation was felt at the WL and the size of the file was recorded. The instrument corresponding to the IAF was fixed into the canal at the WL with methylcyanoacrylate. The teeth were then sectioned transversally 1 mm short of the apex, with the IAF in position. Cross-sections of the WL region were examined under scanning electron microscopy and the discrepancies between canal diameter and the diameter of IAF were calculated using the tool "rule" (FEG) of the microscope's proprietary software. The measurements (µm) were analyzed statistically by Kruskal-Wallis and Dunn's tests at 5% significance level. There were statistically significant differences among the groups (p<0.05). The non-flared group had the greatest discrepancy (125.30 ± 51.54) and differed significantly from all flared groups (p<0.05). Cervical preflaring with LA Axxess burs produced the least discrepancies (55.10 ± 48.31), followed by EndoFlare instruments (68.20 ± 42.44), Gattes Glidden drills (68.90 ± 42.46) and ProTaper files (77.40 ± 73.19). However, no significant differences (p>0.05) were found among the rotary instruments. In conclusion, cervical preflaring improved IAF fitting to the canals at the WL in mesiobuccal roots of maxillary first molars. The rotary instruments evaluated in this study did not differ from each other regarding the discrepancies produced between the IAF size and canal diameter at the WL.
Resumo:
This study compared the coronal and apical leakage of AH Plus with gutta-percha to that of Epiphany with Resilon. Twenty-four single rooted teeth were instrumented and divided into 2 groups according to the solutions for smear layer removal and the obturation materials employed: Group A - 17% EDTA-T and AH Plus with gutta-percha; Group B - primer and Epiphany with Resilon. The Group B specimens were light-cured in the coronal area for 20 s. The external root surfaces were covered with a double layer of ethyl cyanoacrylate, except for the apical foramen and the cavity access. The teeth were immersed in 0.5% methylene blue for 48 h. The specimens were rinsed, dried and axially split for dye penetration measurement with the ImageLab 2.3 software. The t-test showed no significant differences for coronal leakage between the groups, but there were significant differences for apical leakage between the groups (P < 0.05). AH Plus with gutta-percha and Epiphany with Resilon provided the same coronal seal, whereas Epiphany with Resilon provided the best apical seal.
Resumo:
In this study, scanning electron microscopy (SEM) was used to evaluate the adaptation of the first apical file after preflaring in mesiobuccal (MB) and mesiolingual (ML) canals of mandibular molars considering the tactile sensibility as a reference. The mesial canals (n = 22) of human mandibular molar teeth were used, and the first instrument to bind to the working length was determined after preflaring and crown-down shaping. Digital images of the root apex were acquired and a single examiner determined the contact of the file with the walls using Image J software. The results showed that the file was in contact in 47.83% and 31.71% in the MB and ML canals, respectively. When the apexes are fused, the average was 40.03%. A descriptive analysis showed that the first apical file did not touch all dentin walls in any of the samples.
Resumo:
The purpose of this in vitro study was to evaluate the effect of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation on intracanal dentin surface by SEM analysis and its interference in the apical seal of filled canals. After endodontic treatment procedures, 34 maxillary human incisors were randomly assigned to 2 groups. In the negative control group (n=17), no additional treatment was performed and teeth were filled with vertically condensed gutta-percha; in the laser-treated group (n=17), the root canals were irradiated with Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) before filling as described for the control group. Two specimens of each group were prepared for SEM analysis to evaluate the presence and extent of morphological changes and removal of debris; the other specimens were immersed in 0.5% methylene blue dye (pH 7.2) for 24 h for evaluation of the linear dye leakage at the apical third. SEM analysis of the laser-treated group showed dentin fusion and resolidification without smear layer or debris. The Student’s t-test showed that the laser-treated group had significantly less leakage in apical third than the control group. Within the limitations of this study, it may be concluded that the morphological changes on the apical intraradicular dentin surface caused by Nd:YAG laser resulted in less linear dye apical leakage.
Resumo:
Cells normally undergo physiological turnover through the induction of apoptosis and phagocytic removal, partly through exposure of cell surface phosphatidylserine (PS). In contrast, neutrophils appear to possess apoptosis-independent mechanisms of removal. Here we show that Galectin-1 (Gal-1) induces PS exposure independent of alterations in mitochondrial potential, caspase activation, or cell death. Furthermore, Gal-1-induced PS exposure reverts after Gal-1 removal without altering cell viability. Gal-1-induced PS exposure is uniquely microdomain restricted, yet cells exposing PS do not display evident alterations in membrane morphology nor do they exhibit bleb formation, typically seen in apoptotic cells. Long-term exposure to Gal-1 prolongs PS exposure with no alteration in cell cycle progression or cell growth. These results demonstrate that Gal-1-induced PS exposure and subsequent phagocytic removal of living cells represents a new paradigm in cellular turnover.
Resumo:
We have adapted an actin-mosin motility assay to examine the interactions in vitro between actin cables isolated from the giant internodal cells of the freshwater alga, Nitella, and pigment granules extracted from red ovarian chromatophores of the freshwater palaemonid shrimp, Macrobrachium olfersi. The chromatophore pigment mass consists of large (0.5-1.0-mu m diameter) membrane-bounded granules, and small (140-nm diameter), a membranous granules, both structurally continuous with the abundant smooth endoplasmic reticulum. Our previous immunocytochemical studies show a myosin motor to be stably associated with the pigment mass; however, to which granule type or membrane the myosin motor is attached is unclear. Here, we show that sodium vanadate, a myosin ATPase inhibitor, markedly increases the affinity of isolated, large, membrane-bounded granules for Nitella actin cables to which they become permanently attached. This interaction does not occur in granule preparations containing ATP with uninhibited, active myosin without vanadate. We propose that a stable state of elevated affinity is established between the granule-located myosin motor and the Nitella actin cables, resulting from a vanadate-inhibited acto-myosin-ADP complex. This finding provides further evidence for a myosin motor positioned on the surface of the membrane-bounded pigment granules in shrimp ovarian chromatophores.
Resumo:
A series of photosensitizers (PS), which are meso-substituted tetra-cationic porphyrins, was synthesized in order to study the role of amphiphilicity and zinc insertion in photodynamic therapy (PDT) efficacy. Several properties of the PS were evaluated and compared within the series including photophysical properties (absorption spectra, fluorescence quantum yield Phi(f), and singlet oxygen quantum yield Phi(Delta)), uptake by vesicles, mitochondria and HeLa cells, dark and phototoxicity in HeLa cells. The photophysical properties of all compounds are quite similar (Phi(f) <= 0.02; Phi(Delta) similar to 0.8). An increase in lipophilicity and the presence of zinc in the porphyrin ring result in higher vesicle and cell uptake. Binding in mitochondria is dependent on the PS lipophilicity and on the electrochemical membrane potential, i.e., in uncoupled mitochondria PS binding decreases by up to 53%. The porphyrin substituted with octyl groups (TC8PyP) is the compound that is most enriched in mitochondria, and its zinc derivative (ZnTC8PyP) has the highest global uptake. The stronger membrane interaction of the zinc-substituted porphyrins is attributed to a complexing effect with phosphate groups of the phospholipids. Zinc insertion was also shown to decrease the interaction with isolated mitochondria and with the mitochondria of HeLa cells, an effect that has been explained by the particular characteristics of the mitochondrial internal membrane. Phototoxicity was shown to increase proportionally with membrane binding efficiency, which is attributed to favorable membrane interactions which allow more efficient membrane photooxidation. For this series of compounds, photodynamic efficiency is directly proportional to the membrane binding and cell uptake, but it is not totally related to mitochondrial targeting.
Resumo:
Objective: To verify the effects of laser energy on intracanal dentin surfaces, by analyzing the morphologic changes and removal of debris in the apical third of 30 extracted human teeth, prepared and irradiated with the Nd:YAG laser and diode laser. Background Data: Lasers have been widely used in endodontics. The morphologic changes in dentin walls caused by Nd: YAG and diode laser irradiation could improve apical seals and cleanliness. Materials and Methods: The protocol used for Nd: YAG laser irradiation was 1.5 W, 100 mJ, and 15 Hz, in pulsed mode, and for diode laser was 2.5 W in continuous mode. Each specimen was irradiated four times at a speed of 2 mm/sec with a 20-sec interval between applications. Five calibrated examiners scored the morphologic changes and debris removal on a 4-point scale. Results: In analyzing the scores, there were no statistically significant differences between the two types of laser for either parameter, according to Kruskal-Wallis testing at p = 0.05. The SEM images showed fusion and resolidification of the dentin surface, with partial removal of debris on the specimens irradiated with the Nd: YAG laser and the diode laser, compared with controls. Conclusion: Both lasers promote morphologic changes and debris removal. These alterations of the dentin surface appeared to be more evident in the Nd: YAG laser group, but the diode laser group showed more uniform changes.
Resumo:
Objective: To evaluate the influence of 810-nm-diode laser irradiation, applied before root canal filling, on apical sealing ability of three different resin-based sealers (AH Plus, EndoRez, and RealSeal). Background: Lasers have been widely used in endodontics. The dentin wall changes caused by laser irradiation could improve the sealing ability of endodontic cements. Methods: Sixty single-rooted human teeth were divided into six groups, according to the endodontic sealer used and previous 810-nm-diode laser irradiation. The protocol for laser irradiation was 2.5W in a continuous wave, in scanning mode, with four irradiations per tooth. After sample preparation, they were analyzed according to apical leakage with silver nitrate impregnation. Results: The RealSeal sealer achieved minimum leakage rates (1.24 mm), with significant differences at the 1% level (Tukey's test, p < 0.01) from AH Plus (1.84 mm) in nonirradiated groups. When the laser was used, there were also significant differences at the 5% level (p < 0.05) between irradiated groups (1.31 and 1.78 mm, respectively). Conclusion: The 810-nm-diode laser irradiation did not promote significant differences in apical leakage.
Resumo:
Objective: This study evaluated ultra-structural dentine changes at the apical stop after CO(2) laser irradiation used during biomechanical preparation. Background: Most studies evaluating the sealing efficiency of CO(2) lasers have been carried out after apical root canal resections and retro-filling procedures. Methods: Sixty human canines were prepared with #1 to #6 Largo burs. The apical stops were established at 1 mm (n = 30) and 2 mm (n = 30) from the apex. Final irrigation was performed with 1% NaOCl and 15% EDTA followed by 20 ml of distilled and deionized water. Specimens were subdivided into three subgroups (n = 10 for each stop distance): GI-no radiation (n = 20); GII-3W potency (n = 20), GIII-5W potency (n = 20). After preparation, specimens were evaluated by scanning electron microscopy, with ultra-structural changes classified according to a scoring system based on six qualitatively different outcomes. Results: Statistical analysis using the Mann-Whitney test confirmed more intense results for the specimens irradiated at 5 W potency than at 3 W (p<0.0001). The Kruskal-Wallis test indicated that when using the same potencies (3 or 5 W) at 1 and 2 mm from the apex, there were no statistically significant differences in ultra-structural changes. Conclusions: Our results showed that ultra-structural changes ranged from smear layer removal to dentine fusion. As laser potency was increased from 3 to 5 W, ultra-structural changes included extensive fused lava-like areas sealing the apical foramen.
Resumo:
Background: Lipoprotein lipase (Lpl) acts on triglyceride-rich lipoproteins in the peripheral circulation, liberating free fatty acids for energy metabolism or storage. This essential enzyme is synthesized in parenchymal cells of adipose tissue, heart, and skeletal muscle and migrates to the luminal side of the vascular endothelium where it acts upon circulating lipoproteins. Prior studies suggested that Lpl is immobilized by way of heparan sulfate proteoglycans on the endothelium, but genetically altering endothelial cell heparan sulfate had no effect on Lpl localization or lipolysis. The objective of this study was to determine if extracellular matrix proteoglycans affect Lpl distribution and triglyceride metabolism. Methods and Findings: We examined mutant mice defective in collagen XVIII (Col18), a heparan sulfate proteoglycan present in vascular basement membranes. Loss of Col18 reduces plasma levels of Lpl enzyme and activity, which results in mild fasting hypertriglyceridemia and diet-induced hyperchylomicronemia. Humans with Knobloch Syndrome caused by a null mutation in the vascular form of Col18 also present lower than normal plasma Lpl mass and activity and exhibit fasting hypertriglyceridemia. Conclusions: This is the first report demonstrating that Lpl presentation on the lumenal side of the endothelium depends on a basement membrane proteoglycan and demonstrates a previously unrecognized phenotype in patients lacking Col18.
Resumo:
We have synthesized the amphiphile photosensitizer PE-porph consisting of a porphyrin bound to a lipid head-group. We studied by optical microscopy the response to light irradiation of giant unilamellar vesicles of mixtures of unsaturated phosphatidylcholine lipids and PE-porph. In this configuration, singlet oxygen is produced at the bilayer surface by the anchored porphyrin. Under irradiation, the PE-porph decorated giant unilamellar vesicles exhibit a rapid increase in surface area with concomitant morphological changes. We quantify the surface area increase of the bilayers as a function of time and photosensitizer molar fraction. We attribute this expansion to hydroperoxide formation by the reaction of the singlet oxygen with the unsaturated bonds. Considering data from numeric simulations of relative area increase per phospholipid oxidized (15%), we measure the efficiency of the oxidative reactions. We conclude that for every 270 singlet oxygen molecules produced by the layer of anchored porphyrins, one eventually reacts to generate a hydroperoxide species. Remarkably, the integrity of the membrane is preserved in the full experimental range explored here, up to a hydroperoxide content of 60%, inducing an 8% relative area expansion.
Resumo:
Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 angstrom X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7(XAC2622)) and its interaction with VirB9. NMR solution studies show that residues 27-41 of the disordered flexible N-terminal region of VirB7(XAC2622) interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7(XAC2622) has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7(XAC2622) oligomerizes through interactions involving conserved residues in the N0 domain and residues 42-49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB(7XAC2622) oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring.