964 resultados para AISI H13 steel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, standard algorithms are used to carry out the optimisation of cold-formed steel purlins such as zed, channel and sigma sections, which are assumed to be simply supported and subjected to a gravity load. For zed, channel and sigma section, the local buckling, distortional buckling and lateral-torsional buckling are considered respectively herein. Currently, the local buckling is based on the BS 5950-5:1998 and EN 1993-1-3:2006. The distortional buckling is calculated by the direct strength method employing the elastic distortional buckling which is calculated by three available approaches such as Hancock (1995), Schafer and Pekoz (1998), Yu (2005). In the optimisation program, the lateral-torsional buckling based on BS 5950-5:1998, AISI and analytical model of Li (2004) are investigated. For the optimisation program, the programming codes are written for optimisation of channel, zed and sigma beam. The full study has been coded into a computer-based analysis program (MATLAB).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese (Doutorado em Tecnologia Nuclear)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the research, steel samples tool AISI D2, treated thermally, in the conditions: relief of tension, when maximum, seasoned and seasoned was treated thermally in the temperature of revenimento and revenida had been nitrited in plasma with cathodic cage, in atmosphere of 80%N2:20%H2. One used pressure of 2,5 mbar, 400 and 480°C temperatures with treatment time of 3 and 4 hours, with the objective to evaluate its performance in pipes cut tool. It was compared that the performance of the same steel when only thermally treated, both with tension relief. It was evaluated its hardness. Microstructural aspects (the layer thickness, interface, graisn size, etc) and crystalline phases on the surface. Besides, it was verified accomplishment possibility of nitriding simultaneous to annealing treatment. The tempering samples had presented hardness levels of 600 HV, while in nitrited samples these values had been 1100 HV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In general, among the corrosion inhibitors surfactants are the most commonly used compounds, because they are significantly effective by forming protective films on anodic and cathodic areas. In this study, microemulsions containing he biodegradable saponified coconut oil as surfactant (SME-OCS) was used as green corrosion inhibitors. With this purpose, methanolic extracts of Ixora coccinea Linn (IC) and a polar fraction rich in alkaloids (FA) obtained from Croton cajucara Benth solubilized in the SME-OCS system were examined in the presence of AISI 1020 carbon steel, in saline solution (NaCl 3,5 %). The efficiency of corrosion inhibition of IC and FA were evaluated in the following microemulsions: SME-OCS-IC and SME-OCS-FA. The microemulsion system SME-OCS in the presence and absence of IC and FA was assessed by measurements of weight loss and the electrochemical method of polarization resistance, with variation in the concentration of IC and FA (50 - 400 ppm), showing significant results of corrosion inhibition (83,6 % SME-OCS; 92,2 % SME-OCS-FA; and 95,3 % SME-OCS-IC)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technique of plasma nitriding by the cathode cage mainly stands out for its ability to produce uniform layers, even on parts with complex geometries. In this study, it was investigated the efficiency of this technique for obtaining duplex surface, when used, simultaneously, to nitriding treatment and thin film deposition at temperatures below 500°C. For this, were used samples of AISI 41 0 Martensitic Stainless Steel and performed plasma treatment, combining nitriding and deposition of thin films of Ti and/or TiN in a plasma atmosphere containing N2-H2. It was used a cathodic cage of titanium pure grade II, cylindrical with 70 mm diameter and 34 mm height. Samples were treated at temperature 420ºC for 2 and 12 hours in different working pressures. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with micro-analysis by Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and analysis of Vickers Microhardness were used to investigate coating properties such as homogeneity and surface topography, chemical composition, layer thickness, crystalline phase, roughness and surface microhardness. The results showed there is a direct proportionality between the presence of H2 in plasma atmosphere and the quantity of titanium in surface chemical composition. It was also observed that the plasma treatment at lowpressure is more effective in formation of TiN thin film

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties